100+ datasets found
  1. Average data use of leading navigation apps in the U.S. 2020

    • statista.com
    Updated Nov 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
    Explore at:
    Dataset updated
    Nov 30, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2020
    Area covered
    United States
    Description

    As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

  2. d

    Google Map Data, Google Map Data Scraper, Business location Data- Scrape All...

    • datarade.ai
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2022). Google Map Data, Google Map Data Scraper, Business location Data- Scrape All Publicly Available Data From Google Map & Other Platforms [Dataset]. https://datarade.ai/data-products/google-map-data-google-map-data-scraper-business-location-d-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Serbia, Gibraltar, Switzerland, United States of America, Svalbard and Jan Mayen, Albania, Macedonia (the former Yugoslav Republic of), Bulgaria, Denmark, Japan
    Description

    APISCRAPY, your premier provider of Map Data solutions. Map Data encompasses various information related to geographic locations, including Google Map Data, Location Data, Address Data, and Business Location Data. Our advanced Google Map Data Scraper sets us apart by extracting comprehensive and accurate data from Google Maps and other platforms.

    What sets APISCRAPY's Map Data apart are its key benefits:

    1. Accuracy: Our scraping technology ensures the highest level of accuracy, providing reliable data for informed decision-making. We employ advanced algorithms to filter out irrelevant or outdated information, ensuring that you receive only the most relevant and up-to-date data.

    2. Accessibility: With our data readily available through APIs, integration into existing systems is seamless, saving time and resources. Our APIs are easy to use and well-documented, allowing for quick implementation into your workflows. Whether you're a developer building a custom application or a business analyst conducting market research, our APIs provide the flexibility and accessibility you need.

    3. Customization: We understand that every business has unique needs and requirements. That's why we offer tailored solutions to meet specific business needs. Whether you need data for a one-time project or ongoing monitoring, we can customize our services to suit your needs. Our team of experts is always available to provide support and guidance, ensuring that you get the most out of our Map Data solutions.

    Our Map Data solutions cater to various use cases:

    1. B2B Marketing: Gain insights into customer demographics and behavior for targeted advertising and personalized messaging. Identify potential customers based on their geographic location, interests, and purchasing behavior.

    2. Logistics Optimization: Utilize Location Data to optimize delivery routes and improve operational efficiency. Identify the most efficient routes based on factors such as traffic patterns, weather conditions, and delivery deadlines.

    3. Real Estate Development: Identify prime locations for new ventures using Business Location Data for market analysis. Analyze factors such as population density, income levels, and competition to identify opportunities for growth and expansion.

    4. Geospatial Analysis: Leverage Map Data for spatial analysis, urban planning, and environmental monitoring. Identify trends and patterns in geographic data to inform decision-making in areas such as land use planning, resource management, and disaster response.

    5. Retail Expansion: Determine optimal locations for new stores or franchises using Location Data and Address Data. Analyze factors such as foot traffic, proximity to competitors, and demographic characteristics to identify locations with the highest potential for success.

    6. Competitive Analysis: Analyze competitors' business locations and market presence for strategic planning. Identify areas of opportunity and potential threats to your business by analyzing competitors' geographic footprint, market share, and customer demographics.

    Experience the power of APISCRAPY's Map Data solutions today and unlock new opportunities for your business. With our accurate and accessible data, you can make informed decisions, drive growth, and stay ahead of the competition.

    [ Related tags: Map Data, Google Map Data, Google Map Data Scraper, B2B Marketing, Location Data, Map Data, Google Data, Location Data, Address Data, Business location data, map scraping data, Google map data extraction, Transport and Logistic Data, Mobile Location Data, Mobility Data, and IP Address Data, business listings APIs, map data, map datasets, map APIs, poi dataset, GPS, Location Intelligence, Retail Site Selection, Sentiment Analysis, Marketing Data Enrichment, Point of Interest (POI) Mapping]

  3. Most popular navigation apps in the U.S. 2023, by downloads

    • statista.com
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular navigation apps in the U.S. 2023, by downloads [Dataset]. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
    Explore at:
    Dataset updated
    Mar 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.

    Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.

    Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.

  4. Google Maps Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Google Maps Dataset [Dataset]. https://brightdata.com/products/datasets/google-maps
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 8, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.

  5. d

    YouTube & Google Maps Data | 21+ Attributes | Channel metrics, Creator Info,...

    • datarade.ai
    Updated May 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Exellius Systems (2024). YouTube & Google Maps Data | 21+ Attributes | Channel metrics, Creator Info, Video Metrics | Google My Business Rating, Maps | Social Media Data [Dataset]. https://datarade.ai/data-products/youtube-google-maps-data-20-attributes-channel-metrics-exellius-systems
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    May 27, 2024
    Dataset authored and provided by
    Exellius Systems
    Area covered
    Burkina Faso, Lesotho, United Kingdom, Cameroon, Sao Tome and Principe, Honduras, Taiwan, Jersey, Mayotte, Bonaire, YouTube
    Description

    Our dataset offers a unique blend of attributes from YouTube and Google Maps, empowering users with comprehensive insights into online content and geographical reach. Let's delve into what makes our data stand out:

    Unique Attributes: - From YouTube: Detailed video information including title, description, upload date, video ID, and channel URL. Video metrics such as views, likes, comments, and duration are also provided. - Creator Info: Access author details like name and channel URL. - Channel Information: Gain insights into channel title, description, location, join date, and visual branding elements like logo and banner URLs. - Channel Metrics: Understand a channel's performance with metrics like total views, subscribers, and video count. - Google Maps Integration: Explore business ratings from Google My Business and location data from Google Maps.

    Data Sourcing: - Our data is meticulously sourced from publicly available information on YouTube and Google Maps, ensuring accuracy and reliability.

    Primary Use-Cases: - Marketing: Analyze video performance metrics to optimize content strategies. - Research: Explore trends in creator behavior and audience engagement. - Location-Based Insights: Utilize Google Maps data for market research, competitor analysis, and location-based targeting.

    Fit within Broader Offering: - This dataset complements our broader data offering by providing rich insights into online content consumption and geographical presence. It enhances decision-making processes across various industries, including marketing, advertising, research, and business intelligence.

    Usage Examples: - Marketers can identify popular video topics and optimize advertising campaigns accordingly. - Researchers can analyze audience engagement patterns to understand viewer preferences. - Businesses can assess their Google My Business ratings and geographical distribution for strategic planning.

    With scalable solutions and high-quality data, our dataset offers unparalleled depth for extracting actionable insights and driving informed decisions in the digital landscape.

  6. Internet usage: route planning and road maps (e.g. Google Maps) in Germany...

    • statista.com
    Updated Nov 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Internet usage: route planning and road maps (e.g. Google Maps) in Germany 2013-2016 [Dataset]. https://www.statista.com/statistics/432169/online-route-planning-and-map-usage-eg-google-maps-germany/
    Explore at:
    Dataset updated
    Nov 10, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    This statistic shows the results of a survey on the usage of the internet for route planning, maps and road maps (e.g. Google Maps) in Germany from 2013 to 2016. In 2016, there were about 13.67 million people among the German-speaking population aged 14 years and older, who frequently used the internet to plan routes or to access maps and road maps.

  7. d

    GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-map-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    India, Kenya, Malaysia, Morocco, Egypt, Thailand, Oman, United States of America, Hong Kong, United Arab Emirates
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live Map Data include:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  8. Costa Rica: share of children & teenagers using Google Maps 2019, by area

    • statista.com
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Costa Rica: share of children & teenagers using Google Maps 2019, by area [Dataset]. https://www.statista.com/statistics/1177961/share-children-teenagers-using-google-maps-costa-rica-area/
    Explore at:
    Dataset updated
    Aug 1, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Costa Rica
    Description

    Between 2018 and 2019 about 42 percent of children and teenage students in urban areas of Costa Rica were found to use Google Maps, against almost 28 percent of respondents from rural areas of the country. The study also found that 95 percent of responding children and teens in Costa Rica accessed the internet via a mobile phone.

  9. Google Maps Restaurant Reviews

    • kaggle.com
    Updated Aug 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deniz Bilgin (2023). Google Maps Restaurant Reviews [Dataset]. https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 19, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Deniz Bilgin
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Data includes reviews of different restaurants on Google Maps. There are 1100 comments in total and pictures of each comment in the data set. The data is labeled according to 4 classes (Taste, Menu, Indoor atmosphere, Outdoor atmosphere) for the artificial intelligence to predict. The dataset has been prepared in a way that can be used in both text processing and image processing fields.

    The dataset contains the following columns: business_name, author_name, text, photo, rating, rating_category

    IMPORTANT: The rating_category column is related to the photo of the review. If you want to use this dataset for NLP, you need to label it yourself. I will label it for you when I am available.

  10. d

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2022). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Sarah Beganskas
    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  11. Costa Rica: share of children & teenagers using Google Maps 2019, by gender

    • statista.com
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Costa Rica: share of children & teenagers using Google Maps 2019, by gender [Dataset]. https://www.statista.com/statistics/1178047/share-children-teenagers-using-google-maps-costa-rica-gender/
    Explore at:
    Dataset updated
    Aug 1, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Costa Rica
    Description

    During a 2018/2019 survey, approximately 39 percent of the male school population aged eight to 18 in Costa Rica used Google Maps, against nearly 38 percent of female students within the same age range. Furthermore, nearly 75 percent of responding children and teenagers stated to use the internet at least once a day.

  12. MOOD Maps of Google community mobility change during the COVID-19 outbreak

    • figshare.com
    xlsx
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Wint; Neil Alexander (2022). MOOD Maps of Google community mobility change during the COVID-19 outbreak [Dataset]. http://doi.org/10.6084/m9.figshare.12130980.v155
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    William Wint; Neil Alexander
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MOOD project (MOnitoring Outbreak events for Disease surveillance in a data science context. H2020) has geo-referenced the data Google has published as a series of PDF files presenting reports on national and subnational human mobility levels relative to a baseline data of late January 2020. The details and the PDF files can be found at https://www.google.com/covid19/mobility/.More detail on these files can be found at https://www.moodspatialdata.com/humanmobilityforcovid19 The first set of data were released on April 2 2020 and have been revised weekly since then. The maps now utilise the CSV data released by Google. Please note that the maps figures use a mean of the previous three days, while the Google PDFs use a single days data so there will be differences between values in our maps when compare to the Google PDFs.The authors have extracted the majority of these data into a series of excel spreadsheets. Each worksheet provides the data for % change in numbers of records at various types of location categories illustrated by: retail and recreation, grocery and pharmacy, parks and beaches, transit stations, workplaces and residential (columns f to K). A second set of columns calculates the difference of each value from the mean values for each category (columns L to P) Columns A to E contain geographical details. Column Q contains the names used to link to a mapping file.There are separate worksheets for the date of the data from each dated release (e.g. 2903, 0504 etc.) and separate worksheets calculating the changes between specific dates.A second spreadsheet has been added calculating the 3 day moving mean of each day from the 15th of February. Each day is referenced by the Gregorian calendar day count. So day 48 = Feb 17th.The maps (for EU & Global) display these data. We provide 600 dpi jpegs of the Global (“WD”) and European (“EU”) mapped values at the latest date available, for each of the mobility categories: retail and recreation (“retrec”) , grocery and pharmacy (“grocphar”) , parks (“parks”) , transit stations (“transit”), residential (“resid”) and workplaces (“work”). We also provide maps of the changes from the previous week (“ch”).All data extracting and subsequent processing have been carried out by ERGO (Environmental Research Group Oxford, c/o Dept Zoology, University of Oxford) on behalf of the MOOD H2020 project. Data will be periodically updated. Additional maps can be obtained on request to the authors.

  13. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon, United States
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  14. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, San Miguel Island
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  15. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +5more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset authored and provided by
    Googlehttp://google.com/
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

  16. a

    Data from: Google Earth Engine (GEE)

    • catalog-usgs.opendata.arcgis.com
    • data.amerigeoss.org
    • +6more
    Updated Nov 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://catalog-usgs.opendata.arcgis.com/datasets/amerigeoss::google-earth-engine-gee
    Explore at:
    Dataset updated
    Nov 28, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

  17. M

    Map App Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Map App Report [Dataset]. https://www.archivemarketresearch.com/reports/map-app-558844
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 5, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global map application market is experiencing robust growth, driven by the increasing penetration of smartphones, rising demand for location-based services, and the integration of advanced features like augmented reality and real-time traffic updates. Let's assume a 2025 market size of $15 billion, considering the significant investment and expansion in this sector. With a Compound Annual Growth Rate (CAGR) of 12% projected for the period 2025-2033, the market is poised to reach approximately $45 billion by 2033. This growth is fueled by several key trends: the development of more sophisticated navigation systems incorporating AI, the surge in the popularity of ride-sharing services heavily reliant on map apps, and the expanding use of maps in various industries such as logistics and delivery services. While factors like data privacy concerns and the competitive landscape pose some restraints, the overall outlook remains positive, driven by continuous innovation and increasing user adoption across both general and enterprise segments. The market is segmented by operating system (Android, iOS, Others) and user type (General, Enterprise), reflecting the diverse applications and user needs catered to by these apps. Geographic expansion is another significant factor, with North America and Europe currently leading the market, but substantial growth potential in Asia Pacific and other emerging regions. The competitive landscape is highly dynamic, with established players like Google Maps and Waze vying for market share alongside specialized players like OsmAnd and Citymapper catering to niche needs. The ongoing development of offline map functionality, improved accuracy, and enhanced user interfaces are key factors in maintaining user engagement and attracting new users. Further growth will depend on the ability of companies to leverage emerging technologies such as 5G and edge computing to deliver faster and more reliable location services. The integration of map apps with other services, creating seamless user experiences across various platforms and applications, presents a key area of future development. The continuous expansion of the market reflects a fundamental human need for navigation and location-based information which is amplified by the ever-increasing interconnected world.

  18. H

    High Definition Maps Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). High Definition Maps Report [Dataset]. https://www.archivemarketresearch.com/reports/high-definition-maps-52988
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The High Definition (HD) Maps market is experiencing robust growth, driven by the escalating demand for autonomous vehicles and Advanced Driver-Assistance Systems (ADAS). The market size in 2025 is estimated at $15.49 billion, projecting a significant expansion over the forecast period (2025-2033). While the provided CAGR (Compound Annual Growth Rate) is missing, considering the rapid technological advancements and increasing adoption of autonomous driving technologies, a conservative estimate would place the CAGR between 15% and 20% for the forecast period. This growth is fueled by several key factors, including the increasing accuracy and detail offered by HD maps compared to traditional maps, enabling safer and more efficient navigation for autonomous vehicles. The market is segmented by type (centralized vs. crowdsourced mapping) and application (autonomous vehicles, ADAS, others), with autonomous vehicles currently dominating the market share due to their critical reliance on precise and up-to-date map data. Major players like TomTom, Google, HERE Technologies, and Baidu Apollo are heavily investing in research and development, fostering innovation and competition within the market. Regional growth is expected to be geographically diverse, with North America and Europe leading the initial adoption, followed by a rapid expansion in the Asia-Pacific region driven by significant investments in autonomous vehicle infrastructure and technological advancements. The competitive landscape is characterized by both established map providers and technology giants entering the market. This intense competition is pushing innovation forward, leading to more accurate, detailed, and frequently updated HD maps. Challenges include the high cost of creating and maintaining HD maps, the need for continuous data updates to reflect dynamic road conditions, and data privacy concerns surrounding the collection and use of location data. Despite these challenges, the long-term outlook for the HD Maps market remains incredibly positive, fueled by the continuous advancement of autonomous driving technology and the increasing demand for improved road safety and traffic management solutions. The market's growth trajectory suggests significant opportunities for both established players and emerging companies in the years to come. We project a substantial increase in market size by 2033, exceeding the 2025 figures by a considerable margin, based on the estimated CAGR.

  19. My Map Activity

    • library.ncge.org
    Updated Jul 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). My Map Activity [Dataset]. https://library.ncge.org/documents/NCGE::my-map-activity--1/about
    Explore at:
    Dataset updated
    Jul 28, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: E Gunderson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8, high schoolResource type: lessonSubject topic(s): gisRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:

    1. Create a custom map using Google Maps
    2. Collect and plot data using Google MapsSummary: Students will learn the basics of Google Maps while using geospatial data to create their neighborhood map with the places they spend time. They will also collect data of their choice from another source (website, book, personal life) and plot the data using Google Maps.
  20. Digital Geologic-GIS Map of Bent's Old Fort National Historic Site and...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Bent's Old Fort National Historic Site and Vicinity, Colorado (NPS, GRD, GRI, BEOL, BEOL digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series map by Sharps (1976) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-bents-old-fort-national-historic-site-and-vicinity-colorado-np
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Colorado
    Description

    The Unpublished Digital Geologic-GIS Map of Bent's Old Fort National Historic Site and Vicinity, Colorado is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (beol_geology.gdb), a 10.1 ArcMap (.mxd) map document (beol_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (beol_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (beol_geology_gis_readme.pdf). Please read the beol_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (beol_geology_metadata.txt or beol_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Bent's Old Fort National Historic Site.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2022). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
Organization logo

Average data use of leading navigation apps in the U.S. 2020

Explore at:
Dataset updated
Nov 30, 2022
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Oct 2020
Area covered
United States
Description

As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

Search
Clear search
Close search
Google apps
Main menu