https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Google Base Map content for Mohave County, Arizona.
Development based on the following article: Add Google Maps to ArcMap and Pro
Our dataset offers a unique blend of attributes from YouTube and Google Maps, empowering users with comprehensive insights into online content and geographical reach. Let's delve into what makes our data stand out:
Unique Attributes: - From YouTube: Detailed video information including title, description, upload date, video ID, and channel URL. Video metrics such as views, likes, comments, and duration are also provided. - Creator Info: Access author details like name and channel URL. - Channel Information: Gain insights into channel title, description, location, join date, and visual branding elements like logo and banner URLs. - Channel Metrics: Understand a channel's performance with metrics like total views, subscribers, and video count. - Google Maps Integration: Explore business ratings from Google My Business and location data from Google Maps.
Data Sourcing: - Our data is meticulously sourced from publicly available information on YouTube and Google Maps, ensuring accuracy and reliability.
Primary Use-Cases: - Marketing: Analyze video performance metrics to optimize content strategies. - Research: Explore trends in creator behavior and audience engagement. - Location-Based Insights: Utilize Google Maps data for market research, competitor analysis, and location-based targeting.
Fit within Broader Offering: - This dataset complements our broader data offering by providing rich insights into online content consumption and geographical presence. It enhances decision-making processes across various industries, including marketing, advertising, research, and business intelligence.
Usage Examples: - Marketers can identify popular video topics and optimize advertising campaigns accordingly. - Researchers can analyze audience engagement patterns to understand viewer preferences. - Businesses can assess their Google My Business ratings and geographical distribution for strategic planning.
With scalable solutions and high-quality data, our dataset offers unparalleled depth for extracting actionable insights and driving informed decisions in the digital landscape.
This dataset was created by Daniel del Río
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Google Terrain Base Map content for Mohave County, Arizona.Development based on the following article: Add Google Maps to ArcMap and Pro
Clay content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution Based on machine learning predictions from global compilation of soil profiles and samples. Processing steps are described in detail here. Antarctica is not included. To access and …
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Shubham Ghosal
Released under MIT
Sand content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution Based on machine learning predictions from global compilation of soil profiles and samples. Processing steps are described in detail here. Antarctica is not included. To access and …
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: A Buckingham, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8, high schoolResource type: lessonSubject topic(s): culture, gisRegion: worldStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.
Standard 7. The characteristics, distribution and complexity of the earth’s cultures influence human systems (social, economic and political systems).
Standard 14. Globalization, the spread of capitalism and the end of the Cold War have shaped a contemporary world still characterized by rapid technological change, dramatic increases in global population and economic growth coupled with persistent economic and social disparities and cultural conflict. (The New Global Era: 1989 to Present)
Objectives: Students will be able to:
This dataset was created by Faiq Ali S
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of location-based services (LBS) across various sectors, including transportation, logistics, and e-commerce, is a primary driver. Furthermore, the proliferation of smartphones and connected devices, coupled with advancements in GPS technology and mapping software, continues to fuel market growth. The rising demand for high-resolution, real-time mapping data for autonomous vehicles and smart city initiatives also significantly contributes to market expansion. Competition among established players like Google, TomTom, and ESRI, alongside emerging innovative companies, is fostering continuous improvement in map accuracy, functionality, and data accessibility. This competitive landscape drives innovation and lowers costs, making digital maps increasingly accessible to a broader range of users and applications. However, market growth is not without its challenges. Data security and privacy concerns surrounding the collection and use of location data represent a significant restraint. Ensuring data accuracy and maintaining up-to-date map information in rapidly changing environments also pose operational hurdles. Regulatory compliance with differing data privacy laws across various jurisdictions adds another layer of complexity. Despite these challenges, the long-term outlook for the digital map market remains positive, driven by the relentless integration of location intelligence into nearly every facet of modern life, from personal navigation to complex enterprise logistics solutions. The market's segmentation (although not explicitly provided) likely includes various map types (e.g., road maps, satellite imagery, 3D maps), pricing models (subscriptions, one-time purchases), and industry verticals served. This diversified market structure further underscores its resilience and potential for sustained growth. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market's value is estimated at $2 billion in 2025, exhibiting a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This growth is fueled by several factors, including the rising adoption of location-based services, the proliferation of readily available geographic data, and the growing need for effective data visualization in business intelligence and marketing. The individual user segment currently holds a significant share, but corporate adoption is rapidly expanding, propelled by the need for sophisticated map-based analytics and internal communication. Furthermore, the paid use segment is anticipated to grow more quickly than the free use segment, reflecting the willingness of businesses and organizations to invest in advanced features and functionalities. This trend is further amplified by the increasing integration of interactive maps into various platforms, such as business intelligence dashboards and website content. Geographic expansion is also a significant growth driver. North America and Europe currently dominate the market, but the Asia-Pacific region is showing significant promise due to rapid technological advancements and increasing internet penetration. Competitive pressures remain high, with established players such as Google, Mapbox, and ArcGIS StoryMaps vying for market share alongside innovative startups offering specialized solutions. The market's restraints are primarily focused on the complexities of data integration and the technical expertise required for effective map creation. However, ongoing developments in user-friendly interfaces and readily available data integration tools are mitigating these challenges. The future of the interactive map creation tools market promises even greater innovation, fueled by developments in augmented reality (AR), virtual reality (VR), and 3D visualization technologies. We expect to see the emergence of more sophisticated tools catering to niche requirements, further driving market segmentation and specialization. Continued investment in research and development will also play a crucial role in pushing the boundaries of what's possible with interactive map creation. The market presents opportunities for companies to develop tools which combine data analytics and interactive map design.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
As global communities respond to COVID-19, we've heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps could be helpful as they make critical decisions to combat COVID-19.
These Community Mobility Reports aim to provide insights into what has changed in response to policies aimed at combating COVID-19. The reports chart movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential. (https://www.google.com/covid19/mobility/)
The data contains aggregated and anonymised aggregated data per day for each country. For say accessing data for India - the files 2020_IN_Region_Mobility_Report.csv for 2020 data and 2021_IN_Region_Mobility_Report.csv. The aggregated data is not only present at country level, but also at States and district level - as given in sub_region_1 and sub_region_2.
This data from report published by Google. https://www.google.com/covid19/mobility/
Some Questions to answer
India is having its Second Wave and one of the major causes is considered to the election rallies held in different parts of the country. How does Mobility Impact the COVID Cases?
Comparing Mobility across different Countries
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A personal small portfolio project.
200 coffee shops from 10 Ukrainian cities that were scraped and based on Google local place results data. You have an option where each city is separated into a different file (empty rows are included) There were a number of empty rows. To avoid uncertain results, delete empty rows Google sheets add-on was used to get the job done.
The combined sheet contains empty cells.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is outcome of a paper "Floating Car Data Map-matching Utilizing the Dijkstra Algorithm" accepted for 3rd International Conference on Data Management, Analytics & Innovation held in Kuala Lumpur, Malaysia in 2019.
The floating car data (FCD representing movement of cars with their position in time) is produced by the traffic simulator software (further referred to as Simulator) published in [1] and can be used as an input for data processing and benchmarking. The dataset contains FCD of various quality levels based on the routing graph of the Czech Republic derived from Open Street Map openstreetmap.org.
Should the dataset be exploited in scientific or other way, any acknowledgement or references to our paper [1] and dataset are welcomed and highly appreciated.
Archive contents
The archive contains following folders.
city_oneway and city_roadtrip - FCD from the city of Brno, Czech Republic where FCD is based on Origin-Destination in case of oneway and Origin-Destination-Origin in case of a road trip
intercity_oneway and intercity_roadtrip - FCD from cities of Brno, Ostrava, Olomouc and Zlin, all Czech Republic where FCD is based on Origin-Destination in case of oneway and Origin-Destination-Origin in case of a road trip
Content explanation
All four of mentioned folders contain raw FCD as they come from our Simulator, post-processed FCD enriching Simulator FCD, and obfuscated raw FCD (of both low and high obfuscation level). In the both obfuscated data sets, each measured point was moved in a random direction a number of meters given by drawing a number from a Gaussian distribution. We utilized two Gaussian distributions, one for the roads outside the city (N(0,10) for the lower and N(0,20) for the higher obfuscation level) and one for the roads inside the city (N(0,15) and N(0,30) respectively). Then some predefined number of randomly chosen points were removed (3% in our case). This approach should roughly represent real conditions encountered by FCD data as described by El Abbous and Samanta [2].
In case of post-processed road trip data, there is one extra dataset with "cache" suffix representing the very same dataset limited to a 5-minute session memoization. This folder also contains a picture of processed FCD represented on a map.
Data format Standard UTF-8 encoded CSV files, separated by a semicolon with the following columns:
RAW
Header
session_id;timestamp;lat;lon;speed;bearing;segment_id
Data
session_id: (Type: unsigned INT) - session (car) identifier timestamp: (Type: datetime) - timestamp in UTC lat: (Type: unsigned long) - latitude as used in Google maps lon: (Type: unsigned long) - longitude as used in Google maps speed: (Type: unsigned INT) - actual speed in kmh bearing: (Type: unsigned INT) - actual bearing in angles 0-360 segment_id: (Type: unsigned long) - unique edge identifier
POST-PROCESSED
Header
gid;car_id;point_time;lat;lon;segment_id;speed_kmh;speed_avg_kmh;distance_delta_m;distance_total_m;speedup_ratio;duration;segment_changed;duration_segment;moved;duration_move;good;duration_good;bearing;interpolated
Data
gid: (Type: unsigned long) - global identifier of a record car_id: (Type: unsigned INT) - session (car) identifier point_time: (Type: datetime) - timestamp with timezone lat: (Type: unsigned long) - latitude as used in Google maps lon: (Type: unsigned long) - longitude as used in Google maps segment_id: (Type: unsigned long) - unique edge identifier speed: (Type: unsigned INT) - actual speed in kmh speed_avg_kmh: (Type: unsigned long) - actual average speed of a car in kmh distance_delta_m: (Type: unsigned long) - actual distance delta in metres distance_total_m: (Type: unsigned long) - actual total distance of a car in metres speedup_ratio: (Type: unsigned long) - actual speed-up ratio of a car duration: (Type: time) - actual duration of a car segment_changed: (Type: boolean) - signals if actual segment of a car differs from the previous one duration_segment: (Type: time) - actual duration on a segment of a car moved: (Type: boolean) - signals if actual position of a car differs from the previous one duration_move:(Type: time) - actual duration of a car since moving good: signals if actual record values satisfies all data constraints (all true as derived from Simulator) duration_good: actual duration of a car since when all constraints conditions satisfied bearing: (Type: unsigned INT) - actual bearing in angles 0-360 interpolated: (Type: boolean) - signals if actual segment identifier is calculated (all false as derived from Simulator)
References
[1] V. Ptošek, J. Ševčík, J. Martinovič, K. Slaninová, L. Rapant, and R. Cmar, Real-time traffic simulator for self-adaptive navigation system validation, Proceedings of EMSS-HMS: Modeling & Simulation in Logistics, Traffic & Transportation, 2018.
[2] A. El Abbous and N. Samanta. A modeling of GPS error distri-butions, In proceedings of 2017 European Navigation Conference (ENC), 2017.
This mosaic of visible to shortwave infrared (VSWIR) data was derived from the assignable asset NEON AOP radiance data that was collected by LBNL’s Watershed Function SFA during the summer of 2018 (DOI: 10.15485/1617204). This atmospheric correction was completed to take into account site-specific terrain variability in the 334 km2 survey area centered around Crested Butte, CO. The atmospheric correction was completed using ACORN atmospheric correction software executed on 200 x 200 pixel kernels rather than line by line in order to capture local flight altitude conditions. Manual cloud delineation removed any small shaded areas that occurred within the data collection areas. Mosaics were developed based on preference for days that were in close timing proximity to the coincident ground campaign and with mosaicing criteria that minimized the angle between the sun and the sensor to retrieve the most consistent reflectance (min_phase_refl_tiled). Finally, we generated shade masks based on the geometry between the sun angle at time of flight, the ground surface, and the sensor. Here we provide the orthomosaiced estimated reflectance data (min_phase_refl_tiled.tif), canopy water content (wtrl), estimated atmospheric water vapor (wtrv), the observational data (obs) for this particular mosaic, the estimated visibility (vis), shade masks derived from the digital surface elevation model (shade) and the digital terrain model (shade_tch) added to the canopy height model (DOI: 10.15485/1617203), and a wavelength metadata file. Each image file is provided as a GeoTiff with internal tiling and LZW compression. These data can also be found on Google Earth Engine for extraction, download, and analysis of smaller extents (Google Earth Engine data is linked in external link table).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used for this manuscript were derived from multiple sources: Denver Public Health, Esri, Google, and SafeGraph. Any reuse or redistribution of the datasets are subjected to the restrictions of the data providers: Denver Public Health, Esri, Google, and SafeGraph and should consult relevant parties for permissions.1. COVID-19 case dataset were retrieved from Denver Public Health (Link: https://storymaps.arcgis.com/stories/50dbb5e7dfb6495292b71b7d8df56d0a )2. Point of Interests (POIs) data were retrieved from Esri and SafeGraph (Link: https://coronavirus-disasterresponse.hub.arcgis.com/datasets/6c8c635b1ea94001a52bf28179d1e32b/data?selectedAttribute=naics_code) and verified with Google Places Service (Link: https://developers.google.com/maps/documentation/javascript/reference/places-service)3. The activity risk information is accessible from Texas Medical Association (TMA) (Link: https://www.texmed.org/TexasMedicineDetail.aspx?id=54216 )The datasets for risk assessment and mapping are included in a geodatabase. Per SafeGraph data sharing guidelines, raw data cannot be shared publicly. To view the content of the geodatabase, users should have installed ArcGIS Pro 2.7. The geodatabase includes the following:1. POI. Major attributes are locations, name, and daily popularity.2. Denver neighborhood with weekly COVID-19 cases and computed regional risk levels.3. Simulated four travel logs with anchor points provided. Each is a separate point layer.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Geospatial Analytics Market size was valued at USD 98.93 billion in 2023 and is projected to reach USD 227.04 billion by 2032, exhibiting a CAGR of 12.6 % during the forecasts period. The Geospatial Analytics Market describes an application of technologies and approaches processing geographic and spatial data for intelligence and decision-making purposes. This market comprises of mapping tools and software, spatial data and geographic information systems (GIS) used in various fields including urban planning, environmental, transport and defence. Use varies from inventory tracking and control to route optimization and assessment of changes in environment. Other trends are the growth of big data and machine learning to improve the predictive methods, the improved real-time data processing the use of geographic data in combination with other technologies, for example, IoT and cloud. Some of the factors that are fuelling the need to find a marketplace for GIS solutions include; Increasing importance of place-specific information Increasing possibilities for data collection The need to properly manage spatial information in a high stand environment. Recent developments include: In May 2023, Google launched Google Geospatial Creator, a powerful tool that allows users to create immersive AR experiences that are both accurate and visually stunning. It is powered by Photorealistic 3D Tiles and ARCore from Google Maps Platform and can be used with Unity or Adobe Aero. Geospatial Creator provides a 3D view of the world, allowing users to place their digital content in the real world, similar to Google Earth and Google Street View. , In April 2023, Hexagon AB launched the HxGN AgrOn Control Room. It is a mobile app that allows managers and directors of agricultural companies to monitor all field operations in real time. It helps managers identify and address problems quickly, saving time and money. Additionally, the app can help to improve safety by providing managers with a way to monitor the location and status of field workers. , In December 2022, ESRI India announced the availability of Indo ArcGIS offerings on Indian public clouds and services to provide better management, collecting, forecasting, and analyzing location-based data. , In May 2022, Trimble announced the launch of the Trimble R12i GNSS receiver, which has a powerful tilt adjustment feature. It enables land surveyors to concentrate on the task and finish it more quickly and precisely. , In May 2021, Foursquare purchased Unfolded, a US-based provider of location-based services. This US-based firm provides location-based services and goods, including data enrichment analytics and geographic data visualization. With this acquisition, Foursquare aims to provide its users access to various first and third-party data sets and integrate them with the geographical characteristics. , In January 2021, ESRI, a U.S.-based geospatial image analytics solutions provider, introduced the ArcGIS platform. ArcGIS Platform by ESRI operates on a cloud consumption paradigm. App developers generally use this technology to figure out how to include location capabilities in their apps, business operations, and goods. It aids in making geospatial technologies accessible. .
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.