100+ datasets found
  1. Average data use of leading navigation apps in the U.S. 2020

    • statista.com
    Updated Nov 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
    Explore at:
    Dataset updated
    Nov 30, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2020
    Area covered
    United States
    Description

    As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

  2. Most popular navigation apps in the U.S. 2023, by downloads

    • statista.com
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular navigation apps in the U.S. 2023, by downloads [Dataset]. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
    Explore at:
    Dataset updated
    Mar 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.

    Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.

    Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.

  3. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +5more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset provided by
    Googlehttp://google.com/
    Google Searchhttp://google.com/
    Authors
    Google
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

  4. d

    GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-map-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Kenya, United States of America, Hong Kong, India, Malaysia, Thailand, Oman, Morocco, United Arab Emirates, Egypt
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live Map Data include:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  5. d

    Google Maps Case Study

    • data.gov.au
    • data.act.gov.au
    pdf
    Updated Nov 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    www.data.act.gov.au (2021). Google Maps Case Study [Dataset]. https://data.gov.au/dataset/ds-act-https%3A%2F%2Fwww.data.act.gov.au%2Fapi%2Fviews%2Fdz6v-nett
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 25, 2021
    Dataset provided by
    www.data.act.gov.au
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This case study document provides information on how Google Maps is using our open datasets and articulates citizen benefits. This case study document provides information on how Google Maps is using our open datasets and articulates citizen benefits.

  6. a

    Google Roads

    • hub.arcgis.com
    • az-mohave.opendata.arcgis.com
    • +2more
    Updated Dec 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohave County Arizona GIS (2020). Google Roads [Dataset]. https://hub.arcgis.com/maps/922c181f41d5426f8b7f1455694234aa
    Explore at:
    Dataset updated
    Dec 9, 2020
    Dataset authored and provided by
    Mohave County Arizona GIS
    Area covered
    Description

    Google Roads Basemap content for Mohave County, Arizona.

    Development based on the following article: Add Google Maps to ArcMap and Pro

  7. C

    Custom Digital Map Service Report

    • datainsightsmarket.com
    doc, pdf
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Custom Digital Map Service Report [Dataset]. https://www.datainsightsmarket.com/reports/custom-digital-map-service-1958630
    Explore at:
    doc, pdfAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The custom digital map service market is experiencing robust growth, driven by the increasing demand for location-based services across diverse sectors. The market, estimated at $8 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a compound annual growth rate (CAGR) of approximately 15%. This expansion is largely attributed to several key drivers. Firstly, the automotive industry's reliance on advanced navigation and driver-assistance systems is a major catalyst. Secondly, the burgeoning location services sector, encompassing ride-sharing, delivery services, and location-based advertising, fuels considerable demand for customized map solutions. Further propelling growth is the rise of business analytics, where customized maps provide invaluable insights into spatial data, optimizing logistics, resource management, and market analysis. Finally, the ongoing development of real-time map data technologies, offering dynamic updates and high accuracy, significantly enhances the value proposition of these services. While data security and privacy concerns pose some challenges, the overall market outlook remains positive. The market segmentation reveals a strong emphasis on custom map solutions, reflecting a growing need for tailored cartographic representations catering to specific business requirements. Real-time map data is another key segment, capitalizing on the demand for dynamic and up-to-date location information. Geographic distribution shows North America and Europe as leading markets, with significant growth potential in the Asia-Pacific region, particularly in rapidly developing economies like China and India. Key players in the market, including Google, TomTom, Mapbox, and others, are actively investing in research and development, pushing technological boundaries and expanding their service portfolios to maintain a competitive edge. The ongoing evolution of map technologies, including improvements in data accuracy, integration with AI/ML, and expanding functionalities like 3D mapping and augmented reality overlays, will further shape the market landscape in the coming years.

  8. My Map Activity

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). My Map Activity [Dataset]. https://library.ncge.org/documents/NCGE::my-map-activity--1/about
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: E Gunderson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8, high schoolResource type: lessonSubject topic(s): gisRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:

    1. Create a custom map using Google Maps
    2. Collect and plot data using Google MapsSummary: Students will learn the basics of Google Maps while using geospatial data to create their neighborhood map with the places they spend time. They will also collect data of their choice from another source (website, book, personal life) and plot the data using Google Maps.
  9. MOOD Maps of Google community mobility change during the COVID-19 outbreak

    • figshare.com
    xlsx
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Wint; Neil Alexander (2022). MOOD Maps of Google community mobility change during the COVID-19 outbreak [Dataset]. http://doi.org/10.6084/m9.figshare.12130980.v155
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    William Wint; Neil Alexander
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MOOD project (MOnitoring Outbreak events for Disease surveillance in a data science context. H2020) has geo-referenced the data Google has published as a series of PDF files presenting reports on national and subnational human mobility levels relative to a baseline data of late January 2020. The details and the PDF files can be found at https://www.google.com/covid19/mobility/.More detail on these files can be found at https://www.moodspatialdata.com/humanmobilityforcovid19 The first set of data were released on April 2 2020 and have been revised weekly since then. The maps now utilise the CSV data released by Google. Please note that the maps figures use a mean of the previous three days, while the Google PDFs use a single days data so there will be differences between values in our maps when compare to the Google PDFs.The authors have extracted the majority of these data into a series of excel spreadsheets. Each worksheet provides the data for % change in numbers of records at various types of location categories illustrated by: retail and recreation, grocery and pharmacy, parks and beaches, transit stations, workplaces and residential (columns f to K). A second set of columns calculates the difference of each value from the mean values for each category (columns L to P) Columns A to E contain geographical details. Column Q contains the names used to link to a mapping file.There are separate worksheets for the date of the data from each dated release (e.g. 2903, 0504 etc.) and separate worksheets calculating the changes between specific dates.A second spreadsheet has been added calculating the 3 day moving mean of each day from the 15th of February. Each day is referenced by the Gregorian calendar day count. So day 48 = Feb 17th.The maps (for EU & Global) display these data. We provide 600 dpi jpegs of the Global (“WD”) and European (“EU”) mapped values at the latest date available, for each of the mobility categories: retail and recreation (“retrec”) , grocery and pharmacy (“grocphar”) , parks (“parks”) , transit stations (“transit”), residential (“resid”) and workplaces (“work”). We also provide maps of the changes from the previous week (“ch”).All data extracting and subsequent processing have been carried out by ERGO (Environmental Research Group Oxford, c/o Dept Zoology, University of Oxford) on behalf of the MOOD H2020 project. Data will be periodically updated. Additional maps can be obtained on request to the authors.

  10. a

    Navigation Map Report

    • archivemarketresearch.com
    doc, ppt
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Navigation Map Report [Dataset]. https://www.archivemarketresearch.com/reports/navigation-map-48824
    Explore at:
    doc, pptAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Variables measured
    Market Size
    Description

    The global navigation map market is experiencing robust growth, driven by increasing adoption of location-based services across various sectors. Our analysis projects a market size of $15 billion in 2025, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key factors. The automotive industry's reliance on advanced driver-assistance systems (ADAS) and autonomous vehicles is a primary driver, demanding high-precision and regularly updated map data. Furthermore, the proliferation of mobile devices with integrated GPS and mapping applications continues to stimulate market growth. The burgeoning enterprise solutions segment, utilizing navigation maps for logistics, fleet management, and delivery optimization, contributes significantly to overall market value. Government and public sector initiatives promoting smart cities and infrastructure development further fuel demand. Technological advancements, such as the integration of LiDAR and improved GIS data, enhance map accuracy and functionality, attracting more users and driving market expansion. The market segmentation reveals substantial contributions from various application areas. The automotive segment is projected to maintain its dominance throughout the forecast period, followed closely by the mobile devices and enterprise solutions segments. Within the type segment, GIS data holds a significant market share due to its versatility and application across various sectors. However, LiDAR data is experiencing rapid growth, driven by its high precision and suitability for autonomous driving applications. Geographic regional analysis indicates strong market presence in North America and Europe, primarily driven by advanced technological infrastructure and high adoption rates. However, the Asia-Pacific region is poised for substantial growth, fueled by rapid urbanization, increasing smartphone penetration, and government investments in infrastructure development. Competitive landscape analysis reveals a blend of established players and emerging technology companies, signifying an increasingly dynamic and innovative market environment.

  11. E

    Electronic Map Report

    • datainsightsmarket.com
    doc, ppt
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Electronic Map Report [Dataset]. https://www.datainsightsmarket.com/reports/electronic-map-1968669
    Explore at:
    doc, pptAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset authored and provided by
    Data Insights Market
    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The electronic map market is experiencing robust growth, driven by increasing adoption of location-based services (LBS), the proliferation of smartphones and connected devices, and the expanding use of GPS technology across various sectors. The market's value, estimated at $15 billion in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $45 billion by 2033. Key drivers include the rising demand for precise navigation systems in the automotive industry, the surge in e-commerce and delivery services relying on efficient route optimization, and the growing importance of location intelligence for urban planning and resource management. Furthermore, advancements in mapping technologies, such as 3D mapping and augmented reality (AR) integration, are further fueling market expansion. While data security and privacy concerns represent a potential restraint, the overall outlook remains positive, fueled by continuous technological advancements and increasing reliance on location data across numerous applications. The market is segmented by various factors, including map type (2D, 3D, etc.), application (navigation, GIS, etc.), and end-user (automotive, government, etc.). Leading companies like ESRI, Google, TomTom, and HERE Technologies are actively shaping the market landscape through innovation and strategic partnerships. Regional variations in market penetration exist, with North America and Europe currently holding a significant share. However, Asia-Pacific is expected to witness the fastest growth due to rapid urbanization and increasing smartphone penetration. The competitive landscape is characterized by both established players and emerging technology companies vying for market share through technological advancements, improved data accuracy, and enhanced user experience. The forecast period of 2025-2033 promises significant opportunities for growth, driven by the continuous integration of electronic maps into various aspects of daily life and the emerging importance of location data in diverse industries.

  12. M

    Mobile Mapping Market Report

    • promarketreports.com
    doc, pdf, ppt
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). Mobile Mapping Market Report [Dataset]. https://www.promarketreports.com/reports/mobile-mapping-market-8779
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jan 21, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Components: Hardware: Includes mobile mapping systems, sensors, and other equipment Software: Includes software for data collection, processing, and visualization Services: Includes data collection, processing, and analysis servicesSolutions: Location-based: Provides location-based information and services Indoor mapping: Creates maps of indoor spaces Asset management: Helps manage assets and track their location 3D mapping: Creates 3D models of buildings and infrastructureApplications: Land surveys: Used for surveying land and creating maps Aerial surveys: Used for surveying areas from the air Real estate & construction: Used for planning and designing buildings and infrastructure IT & telecom: Used for network planning and management Recent developments include: One of the pioneers in wearable mobile mapping technology, NavVis, revealed the NavVis VLX 3, their newest generation of wearable technology. As the name suggests, this is the third version of their wearable VLX system; the NavVis VLX 2 was released in July of 2021, which is over two years ago. In their news release, NavVis emphasises the NavVis VLX 3's improved accuracy in point clouds by highlighting the two brand-new, 32-layer lidars that have been "meticulously designed and crafted" to minimise noise and drift in point clouds while delivering "high detail at range.", According to the North American Mach9 Software Platform, mobile Lidar will produce 2D and 3D maps 30 times faster than current systems by 2023., Even though this is Mach9's first product launch, the business has already begun laying the groundwork for future expansion by updating its website, adding important engineering and sales professionals, relocating to new headquarters in Pittsburgh's Bloomfield area, and forging ties in Silicon Valley., In order to make search more accessible to more users in more useful ways, Google has unveiled a tonne of new search capabilities for 2022 spanning Google Search, Google Lens, Shopping, and Maps. These enhancements apply to Google Maps, Google Shopping, Google Leons, and Multisearch., A multi-year partnership to supply Velodyne Lidar, Inc.'s lidar sensors to GreenValley International for handheld, mobile, and unmanned aerial vehicle (UAV) 3D mapping solutions, especially in GPS-denied situations, was announced in 2022. GreenValley is already receiving sensors from Velodyne., The acquisition of UK-based GeoSLAM, a leading provider of mobile scanning solutions with exclusive high-productivity simultaneous localization and mapping (SLAM) programmes to create 3D models for use in Digital Twin applications, is expected to close in 2022 and be completed by FARO® Technologies, Inc., a global leader in 4D digital reality solutions., November 2022: Topcon donated to TU Dublin as part of their investment in the future of construction. Students learning experiences will be improved by instruction in the most cutting-edge digital building techniques at Ireland's first technical university., October 2022: Javad GNSS Inc has released numerous cutting-edge GNSS solutions for geospatial applications. The TRIUMPH-1M Plus and T3-NR smart antennas, which employ upgraded Wi-Fi, Bluetooth, UHF, and power management modules and integrate the most recent satellite tracking technology into the geospatial portfolio, are two examples of important items.. Key drivers for this market are: Improvements in GPS, LiDAR, and camera technologies have significantly enhanced the accuracy and efficiency of mobile mapping systems. Potential restraints include: The initial investment required for mobile mapping equipment, including sensors and software, can be a barrier for small and medium-sized businesses.. Notable trends are: Mobile mapping systems are increasingly integrated with cloud platforms and AI technologies to process and analyze large datasets, enabling more intelligent mapping and predictive analytics.

  13. v

    VT Dept. of Tourism and Marketing Themed Google Maps

    • geodata.vermont.gov
    • sov-vcgi.opendata.arcgis.com
    • +1more
    Updated Oct 21, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (2016). VT Dept. of Tourism and Marketing Themed Google Maps [Dataset]. https://geodata.vermont.gov/documents/vt-dept-of-tourism-and-marketing-themed-google-maps/about
    Explore at:
    Dataset updated
    Oct 21, 2016
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    VT Dept. of Tourism and Marketing Themed Google Maps

  14. a

    Digital HD Map Report

    • archivemarketresearch.com
    doc, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Digital HD Map Report [Dataset]. https://www.archivemarketresearch.com/reports/digital-hd-map-53621
    Explore at:
    ppt, docAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Digital HD Map market is experiencing robust growth, projected to reach $1558.9 million in 2025 and exhibiting a remarkable Compound Annual Growth Rate (CAGR) of 24.4% from 2025 to 2033. This expansion is driven by the increasing demand for precise location data across various sectors. The automotive industry, particularly autonomous vehicles, is a major catalyst, relying heavily on highly detailed and accurate maps for navigation and safety features. Furthermore, the burgeoning use of augmented reality (AR) and virtual reality (VR) applications, coupled with the expanding smart city initiatives globally, fuels the market's growth trajectory. The rise of advanced driver-assistance systems (ADAS) and the integration of digital maps into connected car platforms also contribute significantly to this market's expansion. Competition within the market is fierce, with established players like Google, TomTom, and HERE Technologies competing alongside emerging innovative companies. The market segmentation by map type (2D HD Map, 3D HD Map) and application (Commercial Use, Military Use, Others) reflects the diverse range of applications and associated technological advancements shaping this dynamic landscape. Different regions contribute varying levels of market share, with North America and Asia-Pacific anticipated to lead due to significant technological advancements and higher adoption rates. The market's growth is not without its challenges. Data acquisition and maintenance costs remain a significant hurdle, especially for maintaining the accuracy and timeliness of high-resolution map data. Ensuring data security and privacy, particularly with the increased use of location data in various applications, presents another substantial challenge. Regulatory frameworks governing the use and collection of such data vary across different geographies, creating complexities for businesses operating internationally. Despite these challenges, the long-term prospects for the Digital HD Map market remain positive, driven by continuous technological innovations, increasing investment in autonomous driving technologies, and the expanding need for precise location intelligence across diverse industry verticals. The market is expected to see further consolidation through mergers and acquisitions as companies strive to enhance their capabilities and market share.

  15. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  16. PDS Planetary Maps API

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2025). PDS Planetary Maps API [Dataset]. https://catalog.data.gov/dataset/pds-planetary-maps-api
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    We are developing a set of NASA Extensions to the Google Maps API—and soon to other frameworks such as OpenLayers as well—that will make these platforms more useful to NASA scientists and our colleagues elsewhere.

  17. World Traffic Web Map

    • walmart-event-collaboration-portal-walmarttech.hub.arcgis.com
    Updated Jun 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walmart Emergency Management (2021). World Traffic Web Map [Dataset]. https://walmart-event-collaboration-portal-walmarttech.hub.arcgis.com/maps/world-traffic-web-map
    Explore at:
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    Walmarthttp://walmart.com/
    Authors
    Walmart Emergency Management
    Area covered
    Description

    This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. Historical traffic is based on the average of observed speeds over the past three years. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.

  18. f

    Data_Sheet_4_Addressing Label Sparsity With Class-Level Common Sense for...

    • frontiersin.figshare.com
    txt
    Updated Jun 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris Welty; Lora Aroyo; Flip Korn; Sara M. McCarthy; Shubin Zhao (2023). Data_Sheet_4_Addressing Label Sparsity With Class-Level Common Sense for Google Maps.CSV [Dataset]. http://doi.org/10.3389/frai.2022.830299.s004
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Chris Welty; Lora Aroyo; Flip Korn; Sara M. McCarthy; Shubin Zhao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Successful knowledge graphs (KGs) solved the historical knowledge acquisition bottleneck by supplanting the previous expert focus with a simple, crowd-friendly one: KG nodes represent popular people, places, organizations, etc., and the graph arcs represent common sense relations like affiliations, locations, etc. Techniques for more general, categorical, KG curation do not seem to have made the same transition: the KG research community is still largely focused on logic-based methods that belie the common-sense characteristics of successful KGs. In this paper, we propose a simple yet novel three-tier crowd approach to acquiring class-level attributes that represent broad common sense associations between categories, and can be used with the classic knowledge-base default & override technique, to address the early label sparsity problem faced by machine learning systems for problems that lack data for training. We demonstrate the effectiveness of our acquisition and reasoning approach on a pair of very real industrial-scale problems: how to augment an existing KG of places and offerings (e.g. stores and products, restaurants and dishes) with associations between them indicating the availability of the offerings at those places. Label sparsity is a general problem, and not specific to these use cases, that prevents modern AI and machine learning techniques from applying to many applications for which labeled data is not readily available. As a result, the study of how to acquire the knowledge and data needed for AI to work is as much a problem today as it was in the 1970s and 80s during the advent of expert systems. Our approach was a critical part of enabling a worldwide local search capability on Google Maps, with which users can find products and dishes that are available in most places on earth.

  19. Global Digital Maps Market Size By Type (Outdoor Maps, 3D and 4D Metaverse),...

    • verifiedmarketresearch.com
    Updated Sep 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Digital Maps Market Size By Type (Outdoor Maps, 3D and 4D Metaverse), By Component (Solution, Service), By Purpose (Navigation Maps, Thematic Maps), By Application (Automotive, Telecommunications, Logistics and Transportation), By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/digital-maps-market/
    Explore at:
    Dataset updated
    Sep 15, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Description

    Digital Maps Market Size And Forecast

    Digital Maps Market size was valued at USD 25.95 Billion in 2024 and is projected to reach USD 100.9 Billion by 2031, growing at a CAGR of 18.50% from 2024 to 2031.

    Global Digital Maps Market Drivers

    Increasing smartphone penetration: The growing number of smartphone users and the widespread availability of internet connectivity have made digital maps easily accessible. Advancements in mapping technology: The development of more accurate and detailed digital maps, incorporating real-time traffic updates and navigation features, has increased their appeal to users. Growth of the ride-sharing and delivery services industry: These industries rely heavily on accurate and up-to-date digital maps for navigation and route optimization.

    Global Digital Maps Market Restraints

    Data privacy concerns: The collection and use of location data raise privacy concerns, which can hinder the adoption of digital maps. Map inaccuracies: Despite advancements in mapping technology, inaccuracies and errors can still occur, leading to user dissatisfaction. Competition from free mapping services: The availability of free mapping services from tech giants like Google and Apple can limit the market for premium digital mapping solutions.

  20. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2022). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
Organization logo

Average data use of leading navigation apps in the U.S. 2020

Explore at:
Dataset updated
Nov 30, 2022
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Oct 2020
Area covered
United States
Description

As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

Search
Clear search
Close search
Google apps
Main menu