6 datasets found
  1. C

    Chicago Zip Code and Neighborhood Map

    • data.cityofchicago.org
    csv, xlsx, xml
    Updated Apr 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Chicago Zip Code and Neighborhood Map [Dataset]. https://data.cityofchicago.org/w/mapn-ahfc/3q3f-6823?cur=170-56vN00g
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Apr 28, 2025
    Authors
    City of Chicago
    Area covered
    Chicago
    Description

    ZIP Code boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ).

  2. t

    San Jose Zip Codes

    • tuscanaproperties.com
    Updated Feb 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tuscana Properties (2025). San Jose Zip Codes [Dataset]. https://www.tuscanaproperties.com/san-jose-zip-codes-map/
    Explore at:
    Dataset updated
    Feb 17, 2025
    Dataset authored and provided by
    Tuscana Properties
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    San Jose
    Variables measured
    95101, 95110, 95111, 95112, 95113, 95116, 95117, 95118, 95119, 95120, and 21 more
    Description

    A dataset containing zip codes in San Jose, California, and their respective populations.

  3. c

    California Public Schools and Districts Map

    • gis.data.ca.gov
    • catalog.data.gov
    • +2more
    Updated Oct 24, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Education (2018). California Public Schools and Districts Map [Dataset]. https://gis.data.ca.gov/maps/169b581b560d4150b03ce84502fa5c72
    Explore at:
    Dataset updated
    Oct 24, 2018
    Dataset authored and provided by
    California Department of Education
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map displays the California Department of Education's (CDE) core set of geographic data layers. This content represents the authoritative source for all statewide public school site locations and school district service areas boundaries for the 2018-19 academic year. The map also includes school and district layers enriched with student demographic and performance information from the California Department of Education's data collections. These data elements add meaningful statistical and descriptive information that can be visualized and analyzed on a map and used to advance education research or inform decision making.

  4. K

    Houston, Texas City Limits

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Feb 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Houston, Texas (2024). Houston, Texas City Limits [Dataset]. https://koordinates.com/layer/13099-houston-texas-city-limits/
    Explore at:
    mapinfo mif, pdf, geodatabase, shapefile, kml, geopackage / sqlite, mapinfo tab, dwg, csvAvailable download formats
    Dataset updated
    Feb 29, 2024
    Dataset authored and provided by
    City of Houston, Texas
    Area covered
    Description

    Vector polygon map data of city limits from Houston, Texas containing 731 features.

    City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.

    By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..

    This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.

  5. d

    Job Postings Data | 750M+ Deduplicated Job Postings | Enriched with...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canaria Inc., Job Postings Data | 750M+ Deduplicated Job Postings | Enriched with Human-Annotated AI Models & Google Maps & Company Data [Dataset]. https://datarade.ai/data-products/canaria-s-ai-driven-job-posting-analytics-500m-records-25-canaria-inc
    Explore at:
    .bin, .json, .xml, .csv, .xls, .txtAvailable download formats
    Dataset authored and provided by
    Canaria Inc.
    Area covered
    United States of America
    Description

    Job Postings Data for Talent Acquisition, HR Strategy & Market Research Canaria’s Job Postings Data product is a structured, AI-enriched dataset that captures and organizes millions of job listings from leading sources such as Indeed, LinkedIn, and other recruiting platforms. Designed for decision-makers in HR, strategy, and research, this data reveals workforce demand trends, employer activity, and hiring signals across the U.S. labor market and enhanced with advanced enrichment models.

    The dataset enables clients to track who is hiring, what roles are being posted, which skills are in demand, where talent is needed geographically, and how compensation and employment structures evolve over time. With field-level normalization and deep enrichment, it transforms noisy job listings into high-resolution labor intelligence—optimized for strategic planning, analytics, and recruiting effectiveness.

    Use Cases: What This Job Postings Data Solves This enriched dataset empowers users to analyze workforce activity, employer behavior, and hiring trends across sectors, geographies, and job categories.

    Talent Acquisition & HR Strategy • Identify hiring trends by industry, company, function, and geography • Optimize job listings and outreach with enriched skill, title, and seniority data • Detect companies expanding or shifting their workforce focus • Monitor new roles and emerging skills in real time

    Labor Market Research & Workforce Planning • Visualize job market activity across cities, states, and ZIP codes • Analyze hiring velocity and job volume changes as macroeconomic signals • Correlate job demand with company size, sector, or compensation structure • Study occupational dynamics using AI-normalized job titles • Use directional signals (job increases/declines) to anticipate market shifts

    HR Analytics & Compensation Intelligence • Map salary ranges and benefits offerings by role, location, and level • Track high-demand or hard-to-fill positions for strategic workforce planning • Support compensation planning and headcount forecasting • Feed job title normalization and metadata into internal HRIS systems • Identify talent clusters and location-based hiring inefficiencies

    What Makes This Job Postings Data Unique

    AI-Based Enrichment at Scale • Extracted attributes include hard skills, soft skills, certifications, and education requirements • Modeled predictions for seniority level, employment type, and remote/on-site classification • Normalized job titles using an internal taxonomy of over 50,000 unique roles • Field-level tagging ensures structured, filterable, and clean outputs

    Salary Parsing & Compensation Insights • Parsed salary ranges directly from job descriptions • AI-based salary predictions for postings without explicit compensation • Compensation patterns available by job title, company, and location

    Deduplication & Normalization • Achieves approximately 60% deduplication rate through semantic and metadata matching • Normalizes company names, job titles, location formats, and employment attributes • Ready-to-use, analysis-grade dataset—fully structured and cleansed

    Company Matching & Metadata • Each job post is linked to a structured company profile, including metadata • Records are cross-referenced with LinkedIn and Google Maps to validate company identity and geography • Enables aggregation at employer or location level for deeper insights

    Freshness & Scalability • Updated hourly to reflect real-time hiring behavior and job market shifts • Delivered in flexible formats (CSV, JSON, or data feed) and customizable filters • Supports segmentation by geography, company, seniority, salary, title, and more

    Who Uses Canaria’s Job Postings Data • HR & Talent Teams – to benchmark roles, optimize pipelines, and compete for talent • Consultants & Strategy Teams – to guide clients with labor-driven insights • Market Researchers – to understand employment dynamics and job creation trends • HR Tech & SaaS Platforms – to power salary tools, job market dashboards, or recruiting features • Economic Analysts & Think Tanks – to model labor activity and hiring-based economic trends • BI & Analytics Teams – to build dashboards that track demand, skill shifts, and geographic patterns

    Summary Canaria’s Job Postings Data provides an AI-enriched, clean, and analysis-ready view of the U.S. job market. Covering millions of listings from Indeed, LinkedIn, other job boards, and ATS sources, it includes detailed job attributes, inferred compensation, normalized titles, skill extraction, and employer metadata—all updated hourly and fully structured.

    With deep enrichment, reliable deduplication, and company matchability, this dataset is purpose-built for users needing workforce insights, market trends, and strategic talent intelligence. Whether you're modeling skill gaps, benchmarking compensation, or visualizing hiring momentum, this dataset provides a complete toolkit for HR and labor intelligence.

    About Canaria Inc. ...

  6. SEN12TP - Sentinel-1 and -2 images, timely paired

    • zenodo.org
    • nde-dev.biothings.io
    • +1more
    json, txt, zip
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Roßberg; Thomas Roßberg; Michael Schmitt; Michael Schmitt (2023). SEN12TP - Sentinel-1 and -2 images, timely paired [Dataset]. http://doi.org/10.5281/zenodo.7342060
    Explore at:
    json, zip, txtAvailable download formats
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Thomas Roßberg; Thomas Roßberg; Michael Schmitt; Michael Schmitt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The SEN12TP dataset (Sentinel-1 and -2 imagery, timely paired) contains 2319 scenes of Sentinel-1 radar and Sentinel-2 optical imagery together with elevation and land cover information of 1236 distinct ROIs taken between 28 March 2017 and 31 December 2020. Each scene has a size of 20km x 20km at 10m pixel spacing. The time difference between optical and radar images is at most 12h, but for almost all scenes it is around 6h since the orbits of Sentinel-1 and -2 are shifted like that. Next to the \(\sigma^\circ\) radar backscatter also the radiometric terrain corrected \(\gamma^\circ\) radar backscatter is calculated and included. \(\gamma^\circ\) values are calculated using the volumetric model presented by Vollrath et. al 2020.

    The uncompressed dataset has a size of 222 GB and is split spatially into a train (~90%) and a test set (~10%). For easier download the train set is split into four separate zip archives.

    Please cite the following paper when using the dataset, in which the design and creation is detailed:
    T. Roßberg and M. Schmitt. A globally applicable method for NDVI estimation from Sentinel-1 SAR backscatter using a deep neural network and the SEN12TP dataset. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2023. https://doi.org/10.1007/s41064-023-00238-y.

    The file sen12tp-metadata.json includes metadata of the selected scenes. It includes for each scene the geometry, an ID for the ROI and the scene, the climate and land cover information used when sampling the central point, the timestamps (in ms) when the Sentinel-1 and -2 image was taken, the month of the year, and the EPSG code of the local UTM Grid (e.g. EPSG:32643 - WGS 84 / UTM zone 43N).

    Naming scheme: The images are contained in directories called {roi_id}_{scene_id}, as for some unique regions image pairs of multiple dates are included. In each directory are six files for the different modalities with the naming {scene_id}_{modality}.tif. Multiple modalities are included: radar backscatter and multispectral optical images, the elevation as DSM (digital surface model) and different land cover maps.

    Data modalities
    nameModalityGEE collection
    s1Sentinel-1 radar backscatterCOPERNICUS/S1_GRD
    s2Sentinel-2 Level-2A (Bottom of atmosphere, BOA) multispectral optical data with added cloud probability bandCOPERNICUS/S2_SR
    COPERNICUS/S2_CLOUD_PROBABILITY
    dsm30m digital surface modelJAXA/ALOS/AW3D30/V3_2
    worldcoverland cover, 10m resolutionESA/WorldCover/v100

    The following bands are included in the tif files, for an further explanation see the documentation on GEE. All bands are resampled to 10m resolution and reprojected to the coordinate reference system of the Sentinel-2 image.

    Modality Bands
    ModalityBand countBand names in tif fileNotes
    s15VV_sigma0, VH_sigma0, VV_gamma0flat, VH_gamma0flat, incAngleVV/VH_sigma0 are the \(\sigma^\circ\) values,
    VV/VH_gamma0flat are the radiometric terrain corrected \(\gamma^\circ\) backscatter values
    incAngle is the incident angle
    s213B1, B2, B3, B4, B5, B7, B7, B8, B8A, B9, B11, B12, cloud_probabilitymultispectral optical bands and the probability that a pixel is cloudy, calculated with the sentinel2-cloud-detector library
    optical reflectances are bottom of atmosphere (BOA) reflectances calculated using sen2cor
    dsm1DSMHeight above sea level. Signed 16 bits. Elevation (in meter) converted from the ellipsoidal height based on ITRF97 and GRS80, using EGM96†1 geoid model.
    worldcover1MapLandcover class

    Checking the file integrity
    After downloading and decompression the file integrity can be checked using the provided file of md5 checksum.
    Under Linux: md5sum --check --quiet md5sums.txt

    References:

    Vollrath, Andreas, Adugna Mullissa, Johannes Reiche (2020). "Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine". In: Remote Sensing 12.1, Art no. 1867. https://doi.org/10.3390/rs12111867.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Chicago (2025). Chicago Zip Code and Neighborhood Map [Dataset]. https://data.cityofchicago.org/w/mapn-ahfc/3q3f-6823?cur=170-56vN00g

Chicago Zip Code and Neighborhood Map

Explore at:
xml, xlsx, csvAvailable download formats
Dataset updated
Apr 28, 2025
Authors
City of Chicago
Area covered
Chicago
Description

ZIP Code boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ).

Search
Clear search
Close search
Google apps
Main menu