As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.
Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.
Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.
By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.
In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.
https://outscraper.com/google-maps-scraper/
As a result of the Google Maps scraping, your data file will contain the following details:
Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID
If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.
Domain Contact Scraper can scrape these details:
Email Facebook Github Instagram Linkedin Phone Twitter Youtube
In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.
Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.
Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionConcerns over privacy and data collection have become increasingly important since software is everywhere. Apps such as Google Maps collect data on users' whereabouts, interests, habits, and more.MethodData collection practices are typically delivered through a privacy policy. To evaluate the effectiveness of privacy policies, we focus on Google Maps as a concrete and widely used app example. Our study explores user perspectives on privacy concerning the Google Maps app, and combines them with prior research to assess user awareness of data collection and privacy. To achieve our objective, we use a survey containing 19 questions (aligned with the themes explored in the state of the art, i.e., privacy policy awareness, users' habits regarding privacy, the effectiveness of privacy policies). The sampling strategy is a convenience one to receive the greatest number of responses. The received answers are analyzed by focusing on the readability and understandability of privacy policies.ResultsThe output indicates that privacy policies are complex, require a significant amount of time to be read, hard to understand by most of the users, and, hence, ignored by most of the users.DiscussionThe various reasons why privacy policies are ineffective and what causes users to avoid reading them are summarized and discussed. Potential solutions to the inefficacy of privacy policies are outlined and areas/hints for further research are revealed.
Explore APISCRAPY, your AI-powered Google Map Data Scraper. Easily extract Business Location Data from Google Maps and other platforms. Seamlessly access and utilize publicly available map data for your business needs. Scrape All Publicly Available Data From Google Maps & Other Platforms.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Key Navigation StatisticsTop Navigation AppsNavigation App RevenueGoogle Maps RevenueNavigation Revenue by CountryNavigation App UsageMapping and navigation apps are a ubiquitous element of...
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Google Maps Platform (GMP) consulting services market is experiencing robust growth, driven by the increasing adoption of location-based services across various sectors. The market, estimated at $2 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $6 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising demand for location intelligence and data-driven decision-making across large enterprises and SMEs is pushing companies to leverage GMP's capabilities. Secondly, the shift towards online services, facilitated by the increasing accessibility and affordability of high-speed internet, is bolstering the adoption of GMP consulting services for efficient mapping, navigation, and location-based marketing. Furthermore, advancements in augmented reality (AR) and virtual reality (VR) technologies integrated with GMP are creating new avenues for innovative applications, driving market growth. However, factors like the high cost of implementation and the need for specialized expertise can restrain market expansion. The market is segmented by application (large enterprises and SMEs) and service type (online and offline), with large enterprises currently dominating due to their greater resources and need for complex location-based solutions. Geographically, North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to exhibit the fastest growth rate due to rapid digitalization and increasing smartphone penetration. The competitive landscape is fragmented, with a mix of global consulting giants like Deloitte, Accenture, and WPP, alongside specialized GMP consulting firms such as MapsPeople and Applied Geographics. These companies are engaged in fierce competition, offering a range of services including integration, customization, application development, and ongoing support. The success of these firms is contingent on their ability to provide tailored solutions that cater to the unique needs of diverse industries and clients, and to continuously adapt to the ever-evolving features and functionalities of the GMP. A critical factor for future growth will be the ability to integrate GMP with other platforms and technologies to create holistic and effective solutions for clients, generating a compelling return on investment. This necessitates significant investment in R&D and upskilling of the workforce.
Google Data for Market Intelligence, Business Validation & Lead Enrichment Google Data is one of the most valuable sources of location-based business intelligence available today. At Canaria, we’ve built a robust, scalable system for extracting, enriching, and delivering verified business data from Google Maps—turning raw location profiles into high-resolution, actionable insights.
Our Google Maps Company Profile Data includes structured metadata on businesses across the U.S., such as company names, standardized addresses, geographic coordinates, phone numbers, websites, business categories, open hours, diversity and ownership tags, star ratings, and detailed review distributions. Whether you're modeling a market, identifying leads, enriching a CRM, or evaluating risk, our Google Data gives your team an accurate, up-to-date view of business activity at the local level.
This dataset is updated daily and is fully customizable, allowing you to pull exactly what you need, whether you're targeting a specific geography, industry segment, review range, or open-hour window.
What Makes Canaria’s Google Data Unique? • Location Precision – Every business record is enriched with latitude/longitude, ZIP code, and Google Plus Code to ensure exact geolocation • Reputation Signals – Review tags, star ratings, and review counts are included to allow brand sentiment scoring and risk monitoring • Diversity & Ownership Tags – Capture public-facing declarations such as “women-owned” or “Asian-owned” for DEI, ESG, and compliance applications • Contact Readiness – Clean, standardized phone numbers and domains help teams route leads to sales, support, or customer success • Operational Visibility – Up-to-date open hours, categories, and branch information help validate which locations are active and when
Our data is built to be matched, integrated, and analyzed—and is trusted by clients in financial services, go-to-market strategy, HR tech, and analytics platforms.
What This Google Data Solves Canaria Google Data answers critical operational, market, and GTM questions like:
• Which businesses are actively operating in my target region or category? • Which leads are real, verified, and tied to an actual physical branch? • How can I detect underperforming companies based on review sentiment? • Where should I expand, prospect, or invest based on geographic presence? • How can I enhance my CRM, enrichment model, or targeting strategy using location-based data?
Key Use Cases for Google Maps Business Data Our clients leverage Google Data across a wide spectrum of industries and functions. Here are the top use cases:
Lead Scoring & Business Validation • Confirm the legitimacy and physical presence of potential customers, partners, or competitors using verified Google Data • Rank leads based on proximity, star ratings, review volume, or completeness of listing • Filter spammy or low-quality leads using negative review keywords and tag summaries • Validate ABM targets before outreach using enriched business details like phone, website, and hours
Location Intelligence & Market Mapping • Visualize company distributions across geographies using Google Maps coordinates and ZIPs • Understand market saturation, density, and white space across business categories • Identify underserved ZIP codes or local business deserts • Track presence and expansion across regional clusters and industry corridors
Company Risk & Brand Reputation Scoring • Monitor Google Maps reviews for sentiment signals such as “scam”, “spam”, “calls”, or service complaints • Detect risk-prone or underperforming locations using star rating distributions and review counts • Evaluate consistency of open hours, contact numbers, and categories for signs of listing accuracy or abandonment • Integrate risk flags into investment models, KYC/KYB platforms, or internal alerting systems
CRM & RevOps Enrichment • Enrich CRM or lead databases with phone numbers, web domains, physical addresses, and geolocation from Google Data • Use business category classification for segmentation and routing • Detect duplicates or outdated data by matching your records with the most current Google listing • Enable advanced workflows like field-based rep routing, localized campaign assignment, or automated ABM triggers
Business Intelligence & Strategic Planning • Build dashboards powered by Google Maps data, including business counts, category distributions, and review activity • Overlay business presence with population, workforce, or customer base for location planning • Benchmark performance across cities, regions, or market verticals • Track mobility and change by comparing past and current Google Maps metadata
DEI, ESG & Ownership Profiling • Identify minority-owned, women-owned, or other diversity-flagged companies using Google Data ownership attributes • Build datasets aligned with supplier diversity mandates or ESG investment strategies • Segment location insights by ownership type ...
https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
It’s a crisp fall morning in Portland. A local barista opens her shop and pulls out her phone to check delivery routes for fresh beans. She taps the familiar red-and-white pin icon, Google Maps. Across the globe in Tokyo, a student uses Street View to navigate to his university. Meanwhile,...
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The High Definition (HD) Maps market is experiencing robust growth, driven by the escalating demand for autonomous vehicles and Advanced Driver-Assistance Systems (ADAS). The market size in 2025 is estimated at $15.49 billion, projecting a significant expansion over the forecast period (2025-2033). While the provided CAGR (Compound Annual Growth Rate) is missing, considering the rapid technological advancements and increasing adoption of autonomous driving technologies, a conservative estimate would place the CAGR between 15% and 20% for the forecast period. This growth is fueled by several key factors, including the increasing accuracy and detail offered by HD maps compared to traditional maps, enabling safer and more efficient navigation for autonomous vehicles. The market is segmented by type (centralized vs. crowdsourced mapping) and application (autonomous vehicles, ADAS, others), with autonomous vehicles currently dominating the market share due to their critical reliance on precise and up-to-date map data. Major players like TomTom, Google, HERE Technologies, and Baidu Apollo are heavily investing in research and development, fostering innovation and competition within the market. Regional growth is expected to be geographically diverse, with North America and Europe leading the initial adoption, followed by a rapid expansion in the Asia-Pacific region driven by significant investments in autonomous vehicle infrastructure and technological advancements. The competitive landscape is characterized by both established map providers and technology giants entering the market. This intense competition is pushing innovation forward, leading to more accurate, detailed, and frequently updated HD maps. Challenges include the high cost of creating and maintaining HD maps, the need for continuous data updates to reflect dynamic road conditions, and data privacy concerns surrounding the collection and use of location data. Despite these challenges, the long-term outlook for the HD Maps market remains incredibly positive, fueled by the continuous advancement of autonomous driving technology and the increasing demand for improved road safety and traffic management solutions. The market's growth trajectory suggests significant opportunities for both established players and emerging companies in the years to come. We project a substantial increase in market size by 2033, exceeding the 2025 figures by a considerable margin, based on the estimated CAGR.
Elevate your B2B marketing strategy with B2B Email Databases' premier Google Maps Data Extraction Service. Our cutting-edge solution offers direct access to a wealth of business information from Google's extensive database, encompassing millions of businesses across a multitude of industries worldwide.
B2B Email Databases' service is meticulously designed to harvest a vast array of business information. This includes but is not limited to, business names, addresses, contact details, website URLs, customer reviews, ratings, and operational hours. Whether you're a burgeoning small business or a well-established enterprise, the data gleaned from our Google Maps Data Extraction Service is an invaluable asset.
Our service empowers your business with the ability to efficiently and accurately generate leads and gather critical market insights. It's an essential tool for analyzing market dynamics, identifying potential B2B leads with precision, and comprehending the competitive landscape. Tailor your data extraction to specific business categories or geographic locations, ensuring you target the most relevant leads for your endeavors.
In today's data-centric business world, utilizing a service like B2B Email Databases' Google Maps Data Extraction is crucial for maintaining a competitive edge. It streamlines the data collection process, allowing you to focus on what's truly important – leveraging this data for your business growth.
Explore the depth of information you can access through our service, which provides comprehensive business insights including contact details, ratings, operational hours, and much more.
To further enhance your data sets with additional details such as social media accounts, consider integrating this service with our Domain Contact Scraper. This supplementary tool can offer deeper insights into a business's digital footprint across various platforms, including Facebook, Instagram, LinkedIn, and more.
Opt for B2B Email Databases' Google Maps Data Extraction Service to gain a strategic advantage in your market. Our solution is designed to simplify your data collection process, enabling your business to flourish in an increasingly competitive and data-driven world.
GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.
With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.
Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.
Primary Use Cases for GapMaps Live Map Data include:
Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.
https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
It starts with a simple habit: you open your browser and type a question. A few keystrokes later, Google gives you answers, videos, maps, and suggestions before you even finish your thought. For billions of people around the world, this daily interaction is second nature. But behind that blinking cursor...
Google Data with verified US business listings from Google Maps, including locations, reviews, hours, and ratings. This Google Data is updated weekly and fully customizable — ideal for lead scoring, market mapping, location analysis, and CRM enrichment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This case study document provides information on how Google Maps is using our open datasets and articulates citizen benefits. This case study document provides information on how Google Maps is using our open datasets and articulates citizen benefits.
https://datos.madrid.es/egob/catalogo/aviso-legalhttps://datos.madrid.es/egob/catalogo/aviso-legal
This data set is related to Traffic. History of traffic data since 2013, indicating the latter for each measurement point, the passing vehicles. The infrastructure of measurement points, available in the city of Madrid corresponds to: 7,360 vehicle detectors with the following characteristics: 71 include number plate reading devices 158 have optical machine vision systems with control from the Mobility Management Center 1,245 are specific to fast roads and access to the city and the rest of the 5,886, with basic traffic light control systems. More than 4,000 measuring points : 253 with systems for speed control, characterization of vehicles and double reading loop 70 of them make up the stations of taking specific seats of the city. Automatic control systems of all the information obtained from the detectors with continuous contrast with expected behavior patterns, as well as the follow-up of the instructions marked by the Technical Committee for Standardization AEN/CTN 199; and in particular SC3 specific applications relating to “Detectors and data collection stations” and SC15 relating to “Data quality”. In this same portal you can find other related data sets such as: Traffic. Real-time traffic data . With real-time information (updated every 5 minutes) Traffic. Map of traffic intensity plots, with the same information in KML format, and with the possibility of viewing it in Google Maps or Google Earth. And other traffic-related data sets. You can search for them by putting the word 'Traffic' in the search engine (top right).
Outscraper's Global Location Data service is an advanced solution for harnessing location-based data from Google Maps. Equipped with features such as worldwide coverage, precise filtering, and a plethora of data fields, Outscraper is your reliable source of fresh and accurate data.
Outscraper's Global Location Data Service leverages the extensive data accessible via Google Maps to deliver critical location data on a global scale. This service offers a robust solution for your global intelligence needs, utilizing cutting-edge technology to collect and analyze data from Google Maps and create accurate and relevant location datasets. The service is supported by a constant stream of reliable and current data, powered by Outscraper's advanced web scraping technology, guaranteeing that the data pulled from Google Maps is both fresh and accurate.
One of the key features of Outscraper's Global Location Data Service is its advanced filtering capabilities, allowing you to extract only the location data you need. This means you can specify particular categories, locations, and other criteria to obtain the most pertinent and valuable data for your business requirements, eliminating the need to sort through irrelevant records.
With Outscraper, you gain worldwide coverage for your location data needs. The service's advanced data scraping technology lets you collect data from any country and city without restrictions, making it an indispensable tool for businesses operating on a global scale or those looking to expand internationally. Outscraper provides a wealth of data, offering an unmatched number of fields to compile and enrich your location data. With over 40 data fields, you can generate comprehensive and detailed datasets that offer deep insights into your areas of interest.
The global reach of this service spans across Africa, Asia, and Europe, covering over 150 countries, including but not limited to Zimbabwe in Africa, Yemen in Asia, and Slovenia in Europe. This broad coverage ensures that no matter where your business operations or interests lie, you will have access to the location data you need.
Experience the Outscraper difference today and elevate your location data analysis to the next level.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MOOD project (MOnitoring Outbreak events for Disease surveillance in a data science context. H2020) has geo-referenced the data Google has published as a series of PDF files presenting reports on national and subnational human mobility levels relative to a baseline data of late January 2020. The details and the PDF files can be found at https://www.google.com/covid19/mobility/.More detail on these files can be found at https://www.moodspatialdata.com/humanmobilityforcovid19 The first set of data were released on April 2 2020 and have been revised weekly since then. The maps now utilise the CSV data released by Google. Please note that the maps figures use a mean of the previous three days, while the Google PDFs use a single days data so there will be differences between values in our maps when compare to the Google PDFs.The authors have extracted the majority of these data into a series of excel spreadsheets. Each worksheet provides the data for % change in numbers of records at various types of location categories illustrated by: retail and recreation, grocery and pharmacy, parks and beaches, transit stations, workplaces and residential (columns f to K). A second set of columns calculates the difference of each value from the mean values for each category (columns L to P) Columns A to E contain geographical details. Column Q contains the names used to link to a mapping file.There are separate worksheets for the date of the data from each dated release (e.g. 2903, 0504 etc.) and separate worksheets calculating the changes between specific dates.A second spreadsheet has been added calculating the 3 day moving mean of each day from the 15th of February. Each day is referenced by the Gregorian calendar day count. So day 48 = Feb 17th.The maps (for EU & Global) display these data. We provide 600 dpi jpegs of the Global (“WD”) and European (“EU”) mapped values at the latest date available, for each of the mobility categories: retail and recreation (“retrec”) , grocery and pharmacy (“grocphar”) , parks (“parks”) , transit stations (“transit”), residential (“resid”) and workplaces (“work”). We also provide maps of the changes from the previous week (“ch”).All data extracting and subsequent processing have been carried out by ERGO (Environmental Research Group Oxford, c/o Dept Zoology, University of Oxford) on behalf of the MOOD H2020 project. Data will be periodically updated. Additional maps can be obtained on request to the authors.
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.