63 datasets found
  1. n

    MapGeo, NRPC's Parcel Viewer

    • gis.nharpc.org
    • hub.arcgis.com
    Updated Oct 4, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nashua Regional Planning Commission (2016). MapGeo, NRPC's Parcel Viewer [Dataset]. https://gis.nharpc.org/documents/a8d0112a8a72408a86fb8affc55a8a40
    Explore at:
    Dataset updated
    Oct 4, 2016
    Dataset authored and provided by
    Nashua Regional Planning Commission
    Description

    Users can browse the map interactively or search by lot ID or address. Available basemaps include aerial images, topographic contours, roads, town landmarks, conserved lands, and individual property boundaries. Overlays display landuse, zoning, flood, water resources, and soil characteristics in relation to neighborhoods or parcels. Integration with Google Street View offers enhanced views of the 2D map location. Other functionality includes map markup, printing, viewing the property record card, and links to official tax maps where available.NRPC's implementation of MapGeo dates back to 2013, however it is the decades of foundational GIS data development at NRPC and partner agencies that has enabled its success. NRPC refreshes the assessing data yearly; the map data is maintained in an ongoing manner.

  2. Digital Property Maps

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Jan 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of New Brunswick (2025). Digital Property Maps [Dataset]. https://open.canada.ca/data/en/dataset/56f75efc-3681-34ce-6440-c2c8a8457332
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 9, 2025
    Dataset provided by
    Government of New Brunswickhttps://www.gnb.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Approximate boundaries for all land parcels in New Brunswick. The boundaries are structured as Polygons. The Property Identifier number or PID is included for each parcel.

  3. d

    Google Map Data, Google Map Data Scraper, Business location Data- Scrape All...

    • datarade.ai
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2022). Google Map Data, Google Map Data Scraper, Business location Data- Scrape All Publicly Available Data From Google Map & Other Platforms [Dataset]. https://datarade.ai/data-products/google-map-data-google-map-data-scraper-business-location-d-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Denmark, Japan, Albania, Switzerland, Serbia, United States of America, Macedonia (the former Yugoslav Republic of), Bulgaria, Gibraltar, Svalbard and Jan Mayen
    Description

    APISCRAPY, your premier provider of Map Data solutions. Map Data encompasses various information related to geographic locations, including Google Map Data, Location Data, Address Data, and Business Location Data. Our advanced Google Map Data Scraper sets us apart by extracting comprehensive and accurate data from Google Maps and other platforms.

    What sets APISCRAPY's Map Data apart are its key benefits:

    1. Accuracy: Our scraping technology ensures the highest level of accuracy, providing reliable data for informed decision-making. We employ advanced algorithms to filter out irrelevant or outdated information, ensuring that you receive only the most relevant and up-to-date data.

    2. Accessibility: With our data readily available through APIs, integration into existing systems is seamless, saving time and resources. Our APIs are easy to use and well-documented, allowing for quick implementation into your workflows. Whether you're a developer building a custom application or a business analyst conducting market research, our APIs provide the flexibility and accessibility you need.

    3. Customization: We understand that every business has unique needs and requirements. That's why we offer tailored solutions to meet specific business needs. Whether you need data for a one-time project or ongoing monitoring, we can customize our services to suit your needs. Our team of experts is always available to provide support and guidance, ensuring that you get the most out of our Map Data solutions.

    Our Map Data solutions cater to various use cases:

    1. B2B Marketing: Gain insights into customer demographics and behavior for targeted advertising and personalized messaging. Identify potential customers based on their geographic location, interests, and purchasing behavior.

    2. Logistics Optimization: Utilize Location Data to optimize delivery routes and improve operational efficiency. Identify the most efficient routes based on factors such as traffic patterns, weather conditions, and delivery deadlines.

    3. Real Estate Development: Identify prime locations for new ventures using Business Location Data for market analysis. Analyze factors such as population density, income levels, and competition to identify opportunities for growth and expansion.

    4. Geospatial Analysis: Leverage Map Data for spatial analysis, urban planning, and environmental monitoring. Identify trends and patterns in geographic data to inform decision-making in areas such as land use planning, resource management, and disaster response.

    5. Retail Expansion: Determine optimal locations for new stores or franchises using Location Data and Address Data. Analyze factors such as foot traffic, proximity to competitors, and demographic characteristics to identify locations with the highest potential for success.

    6. Competitive Analysis: Analyze competitors' business locations and market presence for strategic planning. Identify areas of opportunity and potential threats to your business by analyzing competitors' geographic footprint, market share, and customer demographics.

    Experience the power of APISCRAPY's Map Data solutions today and unlock new opportunities for your business. With our accurate and accessible data, you can make informed decisions, drive growth, and stay ahead of the competition.

    [ Related tags: Map Data, Google Map Data, Google Map Data Scraper, B2B Marketing, Location Data, Map Data, Google Data, Location Data, Address Data, Business location data, map scraping data, Google map data extraction, Transport and Logistic Data, Mobile Location Data, Mobility Data, and IP Address Data, business listings APIs, map data, map datasets, map APIs, poi dataset, GPS, Location Intelligence, Retail Site Selection, Sentiment Analysis, Marketing Data Enrichment, Point of Interest (POI) Mapping]

  4. d

    Google Address Data, Google Address API, Google location API, Google Map...

    • datarade.ai
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2022). Google Address Data, Google Address API, Google location API, Google Map API, Business Location Data- 100 M Google Address Data Available [Dataset]. https://datarade.ai/data-products/google-address-data-google-address-api-google-location-api-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Liechtenstein, Moldova (Republic of), Andorra, China, Monaco, Luxembourg, Spain, Åland Islands, Estonia, United Kingdom
    Description

    Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.

    Key Features:

    Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.

    Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.

    Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.

    Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.

    Use Cases:

    Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.

    Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.

    E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.

    Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.

    Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.

    Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.

    Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.

    Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.

    Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.

    Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!

  5. NZ Parcel Boundaries Wireframe

    • data.linz.govt.nz
    Updated May 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information New Zealand (2015). NZ Parcel Boundaries Wireframe [Dataset]. https://data.linz.govt.nz/set/4769-nz-parcel-boundaries-wireframe/
    Explore at:
    Dataset updated
    May 1, 2015
    Dataset authored and provided by
    Land Information New Zealandhttps://www.linz.govt.nz/
    Description

    NZ Parcel Boundaries Wireframe provides a map of land, road and other parcel boundaries, and is especially useful for displaying property boundaries.
    This map service is for visualisation purposes only and is not intended for download. You can download the full parcels data from the NZ Parcels dataset.
    This map service provides a dark outline and transparent fill, making it perfect for overlaying on our basemaps or any map service you choose.
    Data for this map service is sourced from the NZ Parcels dataset which is updated weekly with authoritative data direct from LINZ’s Survey and Title system. Refer to the NZ Parcel layer for detailed metadata.
    To simplify the visualisation of this data, the map service filters the data from the NZ Parcels layer to display parcels with a status of 'current' only.
    This map service has been designed to be integrated into GIS, web and mobile applications via LINZ’s WMTS and XYZ tile services. View the Services tab to access these services.
    See the LINZ website for service specifications and help using WMTS and XYZ tile services and more information about this service.

  6. e

    Land use map (Open data)

    • data.europa.eu
    esri shape, gml, kml +1
    Updated Jul 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Land use map (Open data) [Dataset]. https://data.europa.eu/data/datasets/carta-uso-del-suolo-open-data?locale=en
    Explore at:
    zip, kml, esri shape, gmlAvailable download formats
    Dataset updated
    Jul 7, 2021
    Description

    Land use consists of reading and interpreting municipal land cover through the use of photo-cartographic documentation (orthophoto, cadastre, etc.) and software for cartography (Google Maps, Maps Street View, Google Earth, etc.).

    It represents a polygonisation of the municipal soil in which each polygon is assigned a nomenclature according to the international standard of codification of the European model CORINE Land Cover.

    The land use has been carried out by the Department of Systems, distributed IT and territory in collaboration with the Project Revision of the PRG.
    It is constantly updated and given the complexity of the data (more than 12000 polygons) are welcome reports of any inaccuracies or improvements by writing to infogis@comune.trento.it

  7. Canada Lands in Google Earth

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +3more
    kml
    Updated Aug 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Canada Lands in Google Earth [Dataset]. https://open.canada.ca/data/en/dataset/a0bd9999-600e-48ad-a186-310dfe135b28
    Explore at:
    kmlAvailable download formats
    Dataset updated
    Aug 25, 2022
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Canada
    Description

    This data provides the integrated cadastral framework for Canada Lands. The cadastral framework consists of active and superseded cadastral parcel, roads, easements, administrative areas, active lines, points and annotations. The cadastral lines form the boundaries of the parcels. COGO attributes are associated to the lines and depict the adjusted framework of the cadastral fabric. The cadastral annotations consist of lot numbers, block numbers, township numbers, etc. The cadastral framework is compiled from Canada Lands Survey Records (CLSR), registration plans (RS) and location sketches (LS) archived in the Canada Lands Survey Records.

  8. s

    Parcel Display Map

    • data.stlouisco.com
    Updated Oct 25, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saint Louis County GIS Service Center (2016). Parcel Display Map [Dataset]. https://data.stlouisco.com/app/parcel-display-map
    Explore at:
    Dataset updated
    Oct 25, 2016
    Dataset authored and provided by
    Saint Louis County GIS Service Center
    Description

    Web App. Parcel map displaying Age of Housing, Residential Appraised Value and Land Use in St. Louis County, Missouri. Link to Metadata.

  9. Earth Map

    • data.amerigeoss.org
    png, wms
    Updated Oct 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2021). Earth Map [Dataset]. https://data.amerigeoss.org/dataset/earth-map
    Explore at:
    wms, png(212978)Available download formats
    Dataset updated
    Oct 15, 2021
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    Area covered
    Earth
    Description

    Summary

    Earth Map (earthmap.org) is a web-based FAO-Google tool for quick multi-temporal analysis of environment and climate parameters for evidence-based policies integrating cloud technologies and freely available datasets. Earth Map can analyse and display data that are already present in Google Earth Engine (earthengine.google.com) as other freely available datasets that have been gathered, processed and uploaded to the platform.

    Data domains range from temperature to precipitation, fires, population, vegetation, evapotranspiration, water, land use/cover, elevation, soil, satellite images, etc. Most of the data include multi-temporal series allowing to have a time machine for several environmental parameters.

    Earth Map aims to lower the access to some feature of Earth Engine through a simple graphical interface with drop-down menus. Any user can run environmental and climatic analysis on their area of interest and in a matter of few seconds.

    https://data.apps.fao.org/catalog/dataset/a7116f30-254f-43c3-85ce-6756b4dd5259/resource/2d9c30c0-b593-4879-9096-1b3e87cc248a/download/earth-map-screenshot.png" alt="EarthMap Screenshot">

    Application

    Users without prior experience in GIS or remote sensing, but with knowledge of the land to be analysed, can use Earth Map to produce images, tables and statistics describing the environmental and climatic context and history of an area. Therefore, Earth Map can play a strategic role in providing guidance in project design but also in project monitoring and final evaluation.

    Even in countries where data appear to be scarce, the remote-sensing data in Earth Engine are integrated with additional freely available datasets to provide timely analysis, customized for the objectives of the projects. The tool allows to gather an in-depth multi-temporal perspective of the environmental and climatic conditions with a focus on the study of the anomalies and their frequency.

    Background

    Earth Map has been developed in the framework of the FAO-Google partnership, in synergy with the FAO Hand-in-Hand Geospatial Platform and thanks to the support of the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). The team behind Earth Map is the same team that developed Collect Earth (www.openforis.org/tools/collect-earth.html) and it is still maintaining it; Collect Earth is another FAO-Google application to produce detailed statistics of land use, land use change and forest through a point sampling approach and freely available remote sensing data.

  10. High resolution cropland agreement map (30 m) circa 2020

    • zenodo.org
    • data.niaid.nih.gov
    bin, png, tiff
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco N. Tubiello; Francesco N. Tubiello; Giulia Conchedda; Giulia Conchedda; Leon Casse; Leon Casse; Pengyu Hao; Zhongxin Chen; Giorgia De Santis; Steffen Fritz; Steffen Fritz; Douglas Muchoney; Pengyu Hao; Zhongxin Chen; Giorgia De Santis; Douglas Muchoney (2024). High resolution cropland agreement map (30 m) circa 2020 [Dataset]. http://doi.org/10.5281/zenodo.7244124
    Explore at:
    tiff, png, binAvailable download formats
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Francesco N. Tubiello; Francesco N. Tubiello; Giulia Conchedda; Giulia Conchedda; Leon Casse; Leon Casse; Pengyu Hao; Zhongxin Chen; Giorgia De Santis; Steffen Fritz; Steffen Fritz; Douglas Muchoney; Pengyu Hao; Zhongxin Chen; Giorgia De Santis; Douglas Muchoney
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accurate and precise measurements of global cropland extent are needed for monitoring the sustainability of agriculture at all scales. Recent advancement in remote sensing and land cover mapping methods have greatly increased the ability to estimate cropland area distribution and trends. Here the FAO presents a map of cropland agreement produced by consolidating information at pixel level from six high-resolutions maps for circa 2020. The following six high resolution layers were used: ESRI 10 meter LU/LC, FROM-GLC, GLAD, GLC-FCS30, Globeland30 and Worldcover.

    Two bands are included in the dataset:

    1. Simple agreement (values between 1 and 6)
    2. Detailed agreement (values between 1 and 63)

    The map, developed in the Google Earth Engine platform, combines the 6 land cover/cropland layers to show their cropland agreement on pixel level at a spatial resolution of 30 meters. The simple agreement has pixel values that range from 1 (only 1 dataset classifies as cropland) to 6 (all datasets agree on presence of cropland). Pixels with a value of 0 indicate pixels where all datasets agree on absence of cropland. The second band includes a detailed agreement, showing which combination of the 6 datasets classify a pixel as cropland. The overview table (DetailedAgreement_LookupTable.xlsx) shows what the pixel values of this detailed agreement (from 1 to 63) correspond to.

    The dataset has been uploaded in 16 tiles, in the preview below and in the file "ACroplandAgreement_30m_Tiles.png" the extent of each tile can be found.

    For more information on FAO statistics on land cover and land use:

    FAO. 2022. Land use statistics and indicators. Global, regional and country trends, 2000–2020. FAOSTAT Analytical Brief, no. 48. Rome. https://doi.org/10.4060/cc0963en

    FAO. 2021. Land cover statistics. Global, regional and country trends, 2000–2019. FAOSTAT Analytical Brief Series No. 37. Rome.

  11. Unpublished Digital Geologic Map of Bering Land Bridge NP and Vicinity,...

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Geologic Map of Bering Land Bridge NP and Vicinity, Alaska (NPS, GRD, GRI, BELA, BELA digital map) adapted from a USGS Open File Report and Scientific Investigations maps by Hudson (1998), Williams (2000) and Till (2010, 2011) and a USGS Unpublished map by Wilson (1999) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-geologic-map-of-bering-land-bridge-np-and-vicinity-alaska-nps-grd-gri-
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Alaska
    Description

    The Unpublished Digital Geologic Map of Bering Land Bridge National Preserve and Vicinity, Alaska is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (bela_geology.gdb), a 10.1 ArcMap (.MXD) map document (bela_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (bela_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (bela_gis_readme.pdf). Please read the bela_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bela_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/bela/bela_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:500,000 and United States National Map Accuracy Standards features are within (horizontally) 254 meters or 833.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.2. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone AD_1983_Alaska_AlbersN, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Bering Land Bridge National Preserve.

  12. BLM Natl Public PLSS CadNSDI

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jul 17, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2017). BLM Natl Public PLSS CadNSDI [Dataset]. https://hub.arcgis.com/maps/6822892a0201443f8d568b73c8baf653
    Explore at:
    Dataset updated
    Jul 17, 2017
    Dataset authored and provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Area covered
    Description

    The PLSS is the basis for Federal land ownership. This data includes township, range, section (first Division), and Intersected.

    There are four layers loaded that are scale dependant with scale dependant labels. At the smallest scales, the state boundaries appear, as the user zooms in Townships and then Section then PLSS Intersected boundaries appears.

  13. a

    Florida Cooperative Land Cover (Vector)

    • hub.arcgis.com
    • opendata.rcmrd.org
    Updated Nov 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Fish and Wildlife Conservation Commission (2022). Florida Cooperative Land Cover (Vector) [Dataset]. https://hub.arcgis.com/documents/f7bb9259f6c7462d8de73b90169eaf43
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset authored and provided by
    Florida Fish and Wildlife Conservation Commission
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The Cooperative Land Cover Map is a project to develop an improved statewide land cover map from existing sources and expert review of aerial photography. The project is directly tied to a goal of Florida's State Wildlife Action Plan (SWAP) to represent Florida's diverse habitats in a spatially-explicit manner. The Cooperative Land Cover Map integrates 3 primary data types: 1) 6 million acres are derived from local or site-specific data sources, primarily on existing conservation lands. Most of these sources have a ground-truth or local knowledge component. We collected land cover and vegetation data from 37 existing sources. Each dataset was evaluated for consistency and quality and assigned a confidence category that determined how it was integrated into the final land cover map. 2) 1.4 million acres are derived from areas that FNAI ecologists reviewed with high resolution aerial photography. These areas were reviewed because other data indicated some potential for the presence of a focal community: scrub, scrubby flatwoods, sandhill, dry prairie, pine rockland, rockland hammock, upland pine or mesic flatwoods. 3) 3.2 million acres are represented by Florida Land Use Land Cover data from the FL Department of Environmental Protection and Water Management Districts (FLUCCS). The Cooperative Land Cover Map integrates data from the following years: NWFWMD: 2006 - 07 SRWMD: 2005 - 08 SJRWMD: 2004 SFWMD: 2004 SWFWMD: 2008 All data were crosswalked into the Florida Land Cover Classification System. This project was funded by a grant from FWC/Florida's Wildlife Legacy Initiative (Project 08009) to Florida Natural Areas Inventory. The current dataset is provided in 10m raster grid format.Changes from Version 1.1 to Version 2.3:CLC v2.3 includes updated Florida Land Use Land Cover for four water management districts as described above: NWFWMD, SJRWMD, SFWMD, SWFWMDCLC v2.3 incorporates major revisions to natural coastal land cover and natural communities potentially affected by sea level rise. These revisions were undertaken by FNAI as part of two projects: Re-evaluating Florida's Ecological Conservation Priorities in the Face of Sea Level Rise (funded by the Yale Mapping Framework for Biodiversity Conservation and Climate Adaptation) and Predicting and Mitigating the Effects of Sea-Level Rise and Land Use Changes on Imperiled Species and Natural communities in Florida (funded by an FWC State Wildlife Grant and The Kresge Foundation). FNAI also opportunistically revised natural communities as needed in the course of species habitat mapping work funded by the Florida Department of Environmental Protection. CLC v2.3 also includes several new site specific data sources: New or revised FNAI natural community maps for 13 conservation lands and 9 Florida Forever proposals; new Florida Park Service maps for 10 parks; Sarasota County Preserves Habitat Maps (with FNAI review); Sarasota County HCP Florida Scrub-Jay Habitat (with FNAI Review); Southwest Florida Scrub Working Group scrub polygons. Several corrections to the crosswalk of FLUCCS to FLCS were made, including review and reclassification of interior sand beaches that were originally crosswalked to beach dune, and reclassification of upland hardwood forest south of Lake Okeechobee to mesic hammock. Representation of state waters was expanded to include the NOAA Submerged Lands Act data for Florida.Changes from Version 2.3 to 3.0: All land classes underwent revisions to correct boundaries, mislabeled classes, and hard edges between classes. Vector data was compared against high resolution Digital Ortho Quarter Quads (DOQQ) and Google Earth imagery. Individual land cover classes were converted to .KML format for use in Google Earth. Errors identified through visual review were manually corrected. Statewide medium resolution (spatial resolution of 10 m) SPOT 5 images were available for remote sensing classification with the following spectral bands: near infrared, red, green and short wave infrared. The acquisition dates of SPOT images ranged between October, 2005 and October, 2010. Remote sensing classification was performed in Idrisi Taiga and ERDAS Imagine. Supervised and unsupervised classifications of each SPOT image were performed with the corrected polygon data as a guide. Further visual inspections of classified areas were conducted for consistency, errors, and edge matching between image footprints. CLC v3.0 now includes state wide Florida NAVTEQ transportation data. CLC v3.0 incorporates extensive revisions to scrub, scrubby flatwoods, mesic flatwoods, and upland pine classes. An additional class, scrub mangrove – 5252, was added to the crosswalk. Mangrove swamp was reviewed and reclassified to include areas of scrub mangrove. CLC v3.0 also includes additional revisions to sand beach, riverine sand bar, and beach dune previously misclassified as high intensity urban or extractive. CLC v3.0 excludes the Dry Tortugas and does not include some of the small keys between Key West and Marquesas.Changes from Version 3.0 to Version 3.1: CLC v3.1 includes several new site specific data sources: Revised FNAI natural community maps for 31 WMAs, and 6 Florida Forever areas or proposals. This data was either extracted from v2.3, or from more recent mapping efforts. Domains have been removed from the attribute table, and a class name field has been added for SITE and STATE level classes. The Dry Tortugas have been reincorporated. The geographic extent has been revised for the Coastal Upland and Dry Prairie classes. Rural Open and the Extractive classes underwent a more thorough reviewChanges from Version 3.1 to Version 3.2:CLC v3.2 includes several new site specific data sources: Revised FNAI natural community maps for 43 Florida Park Service lands, and 9 Florida Forever areas or proposals. This data is from 2014 - 2016 mapping efforts. SITE level class review: Wet Coniferous plantation (2450) from v2.3 has been included in v3.2. Non-Vegetated Wetland (2300), Urban Open Land (18211), Cropland/Pasture (18331), and High Pine and Scrub (1200) have undergone thorough review and reclassification where appropriate. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.2.5 to Version 3.3: The CLC v3.3 includes several new site specific data sources: Revised FNAI natural community maps for 14 FWC managed or co-managed lands, including 7 WMA and 7 WEA, 1 State Forest, 3 Hillsboro County managed areas, and 1 Florida Forever proposal. This data is from the 2017 – 2018 mapping efforts. Select sites and classes were included from the 2016 – 2017 NWFWMD (FLUCCS) dataset. M.C. Davis Conservation areas, 18331x agricultural classes underwent a thorough review and reclassification where appropriate. Prairie Mesic Hammock (1122) was reclassified to Prairie Hydric Hammock (22322) in the Everglades. All SITE level Tree Plantations (18333) were reclassified to Coniferous Plantations (183332). The addition of FWC Oyster Bar (5230) features. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com, including classification corrections to sites in T.M. Goodwin and Ocala National Forest. CLC v3.3 utilizes the updated The Florida Land Cover Classification System (2018), altering the following class names and numbers: Irrigated Row Crops (1833111), Wet Coniferous Plantations (1833321) (formerly 2450), Major Springs (4131) (formerly 3118). Mixed Hardwood-Coniferous Swamps (2240) (formerly Other Wetland Forested Mixed).Changes from Version 3.4 to Version 3.5: The CLC v3.5 includes several new site specific data sources: Revised FNAI natural community maps for 16 managed areas, and 10 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2019 – 2020 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. This version of the CLC is also the first to include land identified as Salt Flats (5241).Changes from Version 3.5 to 3.6: The CLC v3.6 includes several new site specific data sources: Revised FNAI natural community maps for 11 managed areas, and 24 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2018 – 2022 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.6 to 3.7: The CLC 3.7 includes several new site specific data sources: Revised FNAI natural community maps for 5 managed areas (2022-2023). Revised Palm Beach County Natural Areas data for Pine Glades Natural Area (2023). Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. In this version a few SITE level classifications are reclassified for the STATE level classification system. Mesic Flatwoods and Scrubby Flatwoods are classified as Dry Flatwoods at the STATE level. Upland Glade is classified as Barren, Sinkhole, and Outcrop Communities at the STATE level. Lastly Upland Pine is classified as High Pine and Scrub at the STATE level.

  14. a

    Maine GeoLibrary Parcel Viewer Application

    • hub.arcgis.com
    Updated Dec 21, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2016). Maine GeoLibrary Parcel Viewer Application [Dataset]. https://hub.arcgis.com/app/maine::maine-geolibrary-parcel-viewer-application
    Explore at:
    Dataset updated
    Dec 21, 2016
    Dataset authored and provided by
    State of Maine
    Area covered
    Description

    The Maine Geoparcel Viewer Application allows users to search and view available digital parcel data for Organized Townships and Unorganized Territories in the State of Maine. The Maine GeoLibrary and the Maine Office of GIS do not maintain parcel data for communities, cannot verify parcel ownership, and are not responsible for individual parcel data verification or updating emergency records concerning parcel addresses. If you have questions about a specific parcel, please contact the appropriate Town Office or County Registry of Deeds for the most up-to-date information.Within Maine, real property data is maintained by the government organization responsible for assessing and collecting property tax for a given location. Organized towns and townships maintain authoritative data for their communities and may voluntarily submit these data to the Maine GeoLibrary Parcel Project. The "Maine Parcels Organized Towns Feature" layer and "Maine Parcels Organized Towns ADB" table are the product of these voluntary submissions. Communities provide updates to the Maine GeoLibrary on a non-regular basis, which affects the currency of Maine GeoLibrary parcels data; some data are more than ten years old. Please contact the appropriate Town Office or the County Registry of Deeds for more up-to-date parcel information. Organized Town data should very closely match registry information, except in the case of in-process property conveyance transactions.In Unorganized Territories (defined as those regions of the state without a local government that assesses real property and collects property tax), Maine Revenue Services is the authoritative source for parcel data. The "Maine Parcels Unorganized Territory" layer is the authoritative GIS data layer for the Unorganized Territories. However, it must always be used with auxiliary data obtained from the online resources of Maine Revenue Services to compile up-to-date parcel ownership information.

  15. Airport Boundaries

    • data.ca.gov
    • gis.data.ca.gov
    • +1more
    Updated Sep 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caltrans (2024). Airport Boundaries [Dataset]. https://data.ca.gov/dataset/airport-boundaries
    Explore at:
    arcgis geoservices rest api, geojson, csv, kml, html, zipAvailable download formats
    Dataset updated
    Sep 5, 2024
    Dataset provided by
    California Department of Transportationhttp://dot.ca.gov/
    Authors
    Caltrans
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    California Department of Transportation (Caltrans), Division of Transportation Planning, Aeronautics Program provided airport layout drawings with estimated digitized airport property or fence lines with Google Pro images background.

    Caltrans Division of Research, Innovation and System Information (DRISI) GIS office digitized the airport boundary lines with Bing Maps Aerial background and built the boundary lines into a GIS polygon feature class.

    Generally, Airport Layout Plans do not show complete connected property or fence lines. In many cases the boundary lines were interpreted among the property and fence lines with our best judgment. The airport general information derived from FAA Airport Master Record and Reports with their URL are included in the attribute table.

    Airport boundary data is intended for general reference and does not represent official airport property boundary determinations.

  16. H

    Puerto Rico Land Cover/Land Use Map in 2010

    • dataverse.harvard.edu
    • dataone.org
    Updated Aug 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chao Wang; Mei Yu; Qiong Gao; Xian Wang (2019). Puerto Rico Land Cover/Land Use Map in 2010 [Dataset]. http://doi.org/10.7910/DVN/VS5JDP
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 30, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Chao Wang; Mei Yu; Qiong Gao; Xian Wang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Puerto Rico
    Description

    This data set provides land cover and land use(LCLU) classification product at 30-m spatial resolution for Puerto Rico in 2010. The LCLU data was derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data around the year of 2010. The ground reference data were acquired by historical LCLU map, field trip surveys, and visual interpretation of high spatial resolution imagery from Google Earth and aerial photos. The classification model was created with Random Forest classifier. The data was produced by the Department of Environmental Sciences, University of Puerto Rico-Rio Piedras. Please participate in the data usage survey and give some suggestion (https://goo.gl/forms/JshGAXNoqSO3NNxw1), so that we can improve the data.

  17. m

    Southern California 60-cm Urban Land Cover Classification

    • data.mendeley.com
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Red Willow Coleman (2022). Southern California 60-cm Urban Land Cover Classification [Dataset]. http://doi.org/10.17632/zykyrtg36g.2
    Explore at:
    Dataset updated
    Nov 2, 2022
    Authors
    Red Willow Coleman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California 60
    Description

    This dataset represents a high resolution urban land cover classification map across the southern California Air Basin (SoCAB) with a spatial resolution of 60 cm in urban regions and 10 m in non-urban regions. This map was developed to support NASA JPL-based urban biospheric CO2 modeling in Los Angeles, CA. Land cover classification was derived from a novel fusion of Sentinel-2 (10-60 m x 10-60 m) and 2016 NAIP (60 cm x 60 cm) imagery and provides identification of impervious surface, non-photosynthetic vegetation, shrub, tree, grass, pools and lakes.

    Land Cover Classes in .tif file: 0: Impervious surface 1: Tree (mixed evergreen/deciduous) 2: Grass (assumed irrigated) 3: Shrub 4: Non-photosynthetic vegetation 5: Water (masked using MNDWI/NDWI)

    Google Earth Engine interactive app displaying this map: https://wcoleman.users.earthengine.app/view/socab-irrigated-classification

    A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Support from the Earth Science Division OCO-2 program is acknowledged. Copyright 2020. All rights reserved.

  18. d

    Digital Geologic-GIS Map of Wilson's Creek National Battlefield and...

    • datasets.ai
    • catalog.data.gov
    • +1more
    33, 57
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Digital Geologic-GIS Map of Wilson's Creek National Battlefield and Vicinity, Missouri (NPS, GRD, GRI, WICR, WICR digital map) adapted from Missouri Department of Natural Resources, Division of Geology and Land Survey unpublished maps by Robertson (1992), Work and Robertson (1991), Robertson (1990) and Thomson (1981) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-wilsons-creek-national-battlefield-and-vicinity-missouri-nps-g
    Explore at:
    57, 33Available download formats
    Dataset updated
    Sep 1, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Wilsons Creek, Missouri
    Description

    The Digital Geologic-GIS Map of Wilson's Creek National Battlefield and Vicinity, Missouri is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (wicr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (wicr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (wicr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (wicr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (wicr_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (wicr_geology_metadata_faq.pdf). Please read the wicr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Missouri Department of Natural Resources, Division of Geology and Land Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wicr_geology_metadata.txt or wicr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. S

    A sample dataset of coastal land cover including mangroves in southern China...

    • scidb.cn
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhao Chuanpeng; Qin Chengzhi (2020). A sample dataset of coastal land cover including mangroves in southern China [Dataset]. http://doi.org/10.11922/sciencedb.00279
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 9, 2020
    Dataset provided by
    Science Data Bank
    Authors
    Zhao Chuanpeng; Qin Chengzhi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, South China
    Description

    The Sample can drive classification algorithms, thus is a prerequisite for accurate classification. Coastal areas are located in the transitional zone between land and sea, requiring more samples to describe diverse land covers. However, there are scarce studies sharing their sample datasets, leading to a repeat of the time-consuming and laborious sampling procedure. To alleviate the problem, we share a sample set with a total of 16,444 sample points derived from a study of mapping mangroves of China. The sample set contains a total of 10 categories, which are described as follows. 1) The mangroves refer to “true mangroves” (excluding the associate mangrove species). In sampling mangroves, we used the data from the China Mangrove Conservation Network (CMCN, http://www.china-mangrove.org/), a non-governmental organization aiming to promote mangrove ecosystems. The CMCN provides an interactive map that can be annotated by volunteers with text or photos to record mangrove status at a location. Although the locations were shifted due to coordinate system differences and positioning errors, mangroves could be found around the mangrove locations depicted by the CMCN’s map on Google Earth images. There is a total of 1887 mangrove samples. 2) The cropland is dominated by paddy rice. We collected a total 1383 points according to its neat arrangement based on Google Earth images. 3) Coastal forests neighboring mangroves are mostly salt-tolerant, such as Cocos nucifera Linn., Hibiscus tiliaceus Linn., and Cerbera manghas Linn. We collected a total 1158 samples according to their distance to the shoreline based on Google Earth images. 4) Terrestrial forests are forests far from the shoreline, and are intolerant to salt. By visual inspection on Google Earth, we sampled 1269 points based on their appearances and distances to the shoreline. 5) For the grass category, we collected 1282 samples by visual judgement on Google Earth. 6) Saltmarsh, dominated by Spartina alterniflora, covering large areas of tidal flats in China. We collected 2065 samples according to Google Earth images. 7) The tidal flats category was represented by 1517 samples, which were sampled using the most recent global tidal flat map for 2014–2016 and were visually corrected. 8) The “sand or rock” category refers to sandy and pebble beaches or rocky coasts exposed to air, which are not habitats of mangroves. We collected 1622 samples on Google Earth based on visual inspection. 9) For the permanent water category, samples were first randomly sampled from a threshold result of NDWI (> 0.2), and then were visually corrected. A total of 2056 samples were obtained. 10) As to the artificial impervious surfaces category, we randomly sampled from a threshold result corresponding to normal difference built-up index (NDBI) (> 0.1), and corrected them based on Google Earth. The artificial impervious surface category was represented by 2205 samples. This sample dataset covers the low-altitude coastal area of five Provinces (Hainan, Guangdong, Fujian, Zhejiang, and Taiwan), one Autonomous region (Guangxi), and two Special Administrative Regions (Macau and Hong Kong) (see “study_area.shp” in the zip for details). It can be used to train models for coastal land cover classification, and to evaluate classification results. In addition to mangroves, it can also be used in identifying tidal flats, mapping salt marsh, extracting water bodies, and other related applications.Compared with the V1 version, we added a validation dataset for mangrove maps (Mangrove map validation dataset.rar), and thus can evaluate mangrove maps under the same dataset, which benefit the comparison of different mangrove maps. The validation dataset contains 10 shp files, in which each shp file contains 600 mangrove samples (cls_new field = 1) and 600 non-mangrove samples (cls_new field = 0).Compared with the V2 version, we added two classes of forest near water and grass near water, in addition to suppress the prevalent misclassified patches due to the spectral similarity between mangroves and those classes.

  20. A

    Airport Boundaries

    • data.amerigeoss.org
    Updated Feb 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Airport Boundaries [Dataset]. https://data.amerigeoss.org/es/dataset/airport-boundaries-62b9c
    Explore at:
    html, csv, kml, arcgis geoservices rest api, zip, geojsonAvailable download formats
    Dataset updated
    Feb 16, 2022
    Dataset provided by
    United States
    Description

    California department of transportation (Caltrans), Division of Aeronautics provided airport layout drawings with estimated digitized airport property or fence lines with Google Pro images background.

    Caltrans Division of Research, Innovation and System Information (DRISI) GIS office digitized the airport boundary lines with Bing Maps Aerial background and built the boundary lines into a GIS polygon feature class.

    Generally, Airport Layout Plans do not show complete connected property or fence lines. In many cases the boundary lines were interpreted among the property and fence lines with our best judgement. The airport general information derived from FAA Aiport Master Record and Reports with their URL are included in the attribute table.

    Airport boundary data is intended for general reference and does not represent official airport property boundary determinations.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nashua Regional Planning Commission (2016). MapGeo, NRPC's Parcel Viewer [Dataset]. https://gis.nharpc.org/documents/a8d0112a8a72408a86fb8affc55a8a40

MapGeo, NRPC's Parcel Viewer

Explore at:
Dataset updated
Oct 4, 2016
Dataset authored and provided by
Nashua Regional Planning Commission
Description

Users can browse the map interactively or search by lot ID or address. Available basemaps include aerial images, topographic contours, roads, town landmarks, conserved lands, and individual property boundaries. Overlays display landuse, zoning, flood, water resources, and soil characteristics in relation to neighborhoods or parcels. Integration with Google Street View offers enhanced views of the 2D map location. Other functionality includes map markup, printing, viewing the property record card, and links to official tax maps where available.NRPC's implementation of MapGeo dates back to 2013, however it is the decades of foundational GIS data development at NRPC and partner agencies that has enabled its success. NRPC refreshes the assessing data yearly; the map data is maintained in an ongoing manner.

Search
Clear search
Close search
Google apps
Main menu