About the Google Stock Price Dataset
The Google Stock Price Dataset consists of two CSV (Comma Separated Values) files containing historical stock price data for training and evaluation. Each row in the dataset represents a trading day, and the columns provide various information related to Google's stock for that day.
Columns:
Date: The date of the trading day in the format "YYYY-MM-DD."
Open: The opening price of Google's stock on that trading day.
High: The highest price reached during the trading day.
Low: The lowest price reached during the trading day.
Close: The closing price of Google's stock on that trading day.
Adj Close: The adjusted closing price, accounting for any corporate actions (e.g., stock splits, dividends) that may affect the stock's value.
Volume: The trading volume, representing the number of shares traded on that trading day.
Time Period: The train dataset spans from January 1, 2010, to December 31, 2022, providing twelve years of daily stock price information for model training. The test dataset spans from January 1, 2023, to July 30, 2023, providing seven month of daily stock price data for model evaluation.
Data Source:
The dataset was collected from Yahoo Finance (finance.yahoo.com), a reputable and widely-used financial data platform.
Use Case:
The Google Stock Price Dataset can be utilized for various purposes, such as predicting future stock prices, analyzing historical stock trends, and building machine learning models for financial forecasting.
Potential Applications:
Time Series Analysis: Explore stock price patterns and seasonality. Financial Modeling: Develop predictive models to forecast stock prices. Algorithmic Trading: Create trading strategies based on historical stock data. Risk Management: Assess potential risks and volatilities in the stock market.
Citation:
If you use this dataset in your research or analysis, please provide proper attribution and citation to acknowledge the source.
License: This dataset is provided under the Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication, making it freely available for use without any restrictions or attribution requirements.
The art of forecasting stock prices has been a difficult task for many of the researchers and analysts. In fact, investors are highly interested in the research area of stock price prediction. For a good and successful investment, many investors are keen on knowing the future situation of the stock market. Good and effective prediction systems for the stock market help traders, investors, and analyst by providing supportive information like the future direction of the stock market. In this work, we present a recurrent neural network (RNN) and Long Short-Term Memory (LSTM) approach to predict stock market indices.
🇺🇸 Alphabet Inc. (GOOGL) Comprehensive Financial Dataset
Welcome to the GOOGL Financial Dataset! This dataset provides clear and easy-to-use quarterly financial statements (income statement, balance sheet, and cash flow) along with daily historical stock prices.
As a data engineer double majored with economics, I'll personally analyze and provide constructive feedback on all your work using this dataset. Let's dive in and explore Google's financial journey together!
This dataset offers a unique blend of long-term market performance and detailed financial metrics:
Whether you're building predictive models, performing deep-dive financial analysis, or exploring the evolution of one of the world's most innovative tech giants, this dataset is your go-to resource for clean, well-organized, and rich financial data.
For a more comprehensive financial analysis, pair this dataset with my other Kaggle dataset:
👉 Google (Alphabet Inc.) Daily News — 2000 to 2025
That dataset includes:
Combining both datasets unlocks powerful analysis such as:
Together, they give you everything you need for news + financial signal modeling.
This dataset was created by Sandeep K
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Ramchandra
Released under MIT
This dataset was created by R.Sriram
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crude Oil rose to 64.67 USD/Bbl on June 9, 2025, up 0.13% from the previous day. Over the past month, Crude Oil's price has risen 4.39%, but it is still 16.82% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Crude Oil - values, historical data, forecasts and news - updated on June of 2025.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
About the Google Stock Price Dataset
The Google Stock Price Dataset consists of two CSV (Comma Separated Values) files containing historical stock price data for training and evaluation. Each row in the dataset represents a trading day, and the columns provide various information related to Google's stock for that day.
Columns:
Date: The date of the trading day in the format "YYYY-MM-DD."
Open: The opening price of Google's stock on that trading day.
High: The highest price reached during the trading day.
Low: The lowest price reached during the trading day.
Close: The closing price of Google's stock on that trading day.
Adj Close: The adjusted closing price, accounting for any corporate actions (e.g., stock splits, dividends) that may affect the stock's value.
Volume: The trading volume, representing the number of shares traded on that trading day.
Time Period: The train dataset spans from January 1, 2010, to December 31, 2022, providing twelve years of daily stock price information for model training. The test dataset spans from January 1, 2023, to July 30, 2023, providing seven month of daily stock price data for model evaluation.
Data Source:
The dataset was collected from Yahoo Finance (finance.yahoo.com), a reputable and widely-used financial data platform.
Use Case:
The Google Stock Price Dataset can be utilized for various purposes, such as predicting future stock prices, analyzing historical stock trends, and building machine learning models for financial forecasting.
Potential Applications:
Time Series Analysis: Explore stock price patterns and seasonality. Financial Modeling: Develop predictive models to forecast stock prices. Algorithmic Trading: Create trading strategies based on historical stock data. Risk Management: Assess potential risks and volatilities in the stock market.
Citation:
If you use this dataset in your research or analysis, please provide proper attribution and citation to acknowledge the source.
License: This dataset is provided under the Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication, making it freely available for use without any restrictions or attribution requirements.