Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are a few use cases for this project:
Traffic Flow Analysis: The dataset can be used in machine learning models to analyze traffic flow in cities. It can identify the type of vehicles on the city roads at different times of the day, helping in planning and traffic management.
Vehicle Class Based Toll Collection: Toll booths can use this model to automatically classify and charge vehicles based on their type, enabling a more efficient and automated system.
Parking Management System: Parking lot owners can use this model to easily classify vehicles as they enter for better space management. Knowing the vehicle type can help assign it to the most suitable parking spot.
Traffic Rule Enforcement: The dataset can be used to create a computer vision model to automatically detect any traffic violations like wrong lane driving by different vehicle types, and notify law enforcement agencies.
Smart Ambulance Tracking: The system can help in identifying and tracking ambulances and other emergency vehicles, enabling traffic management systems to provide priority routing during emergencies.
Feature layer containing authoritative traffic count points for Sioux Falls, South Dakota.The traffic counts listed are 24-hour, weekday, two-directional counts. Traffic counts are normally collected during the summer months, but may be taken any season, as weather permits. The traffic counts are factored by the day of the week as well as by the month of the year to become an Average Annual Daily Total (AADT). Traffic volumes (i.e. count data) can fluctuate depending on the month, week, day of collection; the weather, type of road surface, nearby construction, etc. All of the historical data should be averaged to reflect the "normal" traffic count. More specific count data (time, date, hourly volume) can be obtained from the Sioux Falls Engineering Division at 367-8601.
Public (anonymized) road traffic prediction datasets from Huawei Munich Research Center.
Datasets from a variety of traffic sensors (i.e. induction loops) for traffic prediction. The data is useful for forecasting traffic patterns and adjusting stop-light control parameters, i.e. cycle length, offset and split times.
The dataset contains recorded data from 6 crosses in the urban area for the last 56 days, in the form of flow timeseries, depicted the number of vehicles passing every 5 minutes for a whole day (i.e. 12 readings/h, 288 readings/day, 16128 readings / 56 days).
This data set features a hyperlink to the New York State Department of Transportation’s (NYSDOT) Traffic Data (TD) Viewer web page, which includes a link to the Traffic Data interactive map. The Traffic Data Viewer is a geospatially based Geographic Information System (GIS) application for displaying data contained in the roadway inventory database. The interactive map has five viewable data categories or ‘layers’. The five layers include: Average Daily Traffic (ADT); Continuous Counts; Short Counts; Bridges; and Grade Crossings throughout New York State.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update NotesMar 16 2024, remove spaces in the file and folder names.Mar 31 2024, delete the underscore in the city names with a space (such as San Francisco) in the '02_TransCAD_results' folder to ensure correct data loading by TransCAD (software version: 9.0).Aug 31 2024, add the 'cityname_link_LinkFlows.csv' file in the '02_TransCAD_results' folder to match the link from input data and the link from TransCAD results (LinkFlows) with the same Link_ID.IntroductionThis is a unified and validated traffic dataset for 20 US cities. There are 3 folders for each city.01 Input datathe initial network data obtained from OpenStreetMap (OSM)the visualization of the OSM dataprocessed node / link / od data02 TransCAD results (software version: 9.0)cityname.dbd : geographical network database of the city supported by TransCAD (version 9.0)cityname_link.shp / cityname_node.shp : network data supported by GIS software, which can be imported into TransCAD manually. Then the corresponding '.dbd' file can be generated for TransCAD with a version lower than 9.0od.mtx : OD matrix supported by TransCADLinkFlows.bin / LinkFlows.csv : traffic assignment results by TransCADcityname_link_LinkFlows.csv: the input link attributes with the traffic assignment results by TransCADShortestPath.mtx / ue_travel_time.csv : the traval time (min) between OD pairs by TransCAD03 AequilibraE results (software version: 0.9.3)cityname.shp : shapefile network data of the city support by QGIS or other GIS softwareod_demand.aem : OD matrix supported by AequilibraEnetwork.csv : the network file used for traffic assignment in AequilibraEassignment_result.csv : traffic assignment results by AequilibraEPublicationXu, X., Zheng, Z., Hu, Z. et al. (2024). A unified dataset for the city-scale traffic assignment model in 20 U.S. cities. Sci Data 11, 325. https://doi.org/10.1038/s41597-024-03149-8Usage NotesIf you use this dataset in your research or any other work, please cite both the dataset and paper above.A brief introduction about how to use this dataset can be found in GitHub. More detailed illustration for compiling the traffic dataset on AequilibraE can be referred to GitHub code or Colab code.ContactIf you have any inquiries, please contact Xiaotong Xu (email: kid-a.xu@connect.polyu.hk).
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
Dataset Card for road-traffic
** The original COCO dataset is stored at dataset.tar.gz**
Dataset Summary
road-traffic
Supported Tasks and Leaderboards
object-detection: The dataset can be used to train a model for Object Detection.
Languages
English
Dataset Structure
Data Instances
A data point comprises an image and its object annotations. { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB… See the full description on the dataset page: https://huggingface.co/datasets/Francesco/road-traffic.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global real-time traffic data market size is anticipated to reach USD 15.3 billion by 2032 from an estimated USD 6.5 billion in 2023, exhibiting a robust CAGR of 10.1% over the forecast period. This substantial growth is driven by the increasing need for efficient traffic management systems and the rising adoption of smart city initiatives worldwide. Governments and commercial entities are investing heavily in advanced technologies to optimize traffic flow and enhance urban mobility, thus fostering market expansion.
The surge in urbanization and the consequent rise in vehicle ownership have led to severe traffic congestion issues in many metropolitan areas. This has necessitated the implementation of real-time traffic data systems that can provide accurate and timely information to manage traffic effectively. With the integration of sophisticated technologies such as IoT, AI, and big data analytics, these systems are becoming more efficient, thereby driving market growth. Furthermore, the growing emphasis on reducing carbon emissions and enhancing road safety is also propelling the adoption of real-time traffic data solutions.
Technological advancements are playing a pivotal role in shaping the real-time traffic data market. Innovations in sensor technology, the proliferation of GPS devices, and the widespread use of mobile data are providing rich sources of real-time traffic information. The ability to integrate data from multiple sources and deliver actionable insights is significantly enhancing traffic management capabilities. Additionally, the development of cloud-based solutions is enabling scalable and cost-effective deployment of traffic data systems, further contributing to market growth.
Another critical growth factor is the increasing investment in smart city projects. Governments across the globe are prioritizing the development of smart transportation infrastructure to improve urban mobility and reduce traffic-related issues. Real-time traffic data systems are integral to these initiatives, providing essential data for optimizing traffic flow, enabling route optimization, and enhancing public transport efficiency. The involvement of private sector players in these projects is also fueling market growth by introducing innovative solutions and fostering public-private partnerships.
The exponential rise in Mobile Data Traffic is another significant factor influencing the real-time traffic data market. As more people rely on smartphones and mobile applications for navigation and traffic updates, the demand for real-time data has surged. Mobile data provides a wealth of information about traffic patterns and congestion levels, enabling more accurate and timely traffic management. The integration of mobile data with other data sources, such as GPS and sensor data, enhances the overall effectiveness of traffic data systems. This trend is particularly evident in urban areas where mobile devices are ubiquitous, and the need for efficient traffic management is critical. The ability to harness mobile data for traffic insights is driving innovation and growth in the market, as companies develop new solutions to leverage this valuable resource.
Regionally, North America and Europe are leading the market due to their early adoption of advanced traffic management technologies and significant investments in smart city projects. However, the Asia Pacific region is expected to witness the highest growth rate over the forecast period, driven by rapid urbanization, increasing vehicle ownership, and growing government initiatives to develop smart transportation infrastructure. Emerging economies in Latin America and the Middle East & Africa are also showing promising growth potential, fueled by ongoing infrastructure development and increasing awareness of the benefits of real-time traffic data solutions.
The real-time traffic data market by component is segmented into software, hardware, and services. Each component plays a crucial role in the overall functionality and effectiveness of traffic data systems. The software segment includes traffic management software, route optimization software, and other analytical tools that help process and analyze traffic data. The hardware segment comprises sensors, GPS devices, and other data collection tools. The services segment includes installation, maintenance, and consulting services that support the deployment and operation of traffic data systems
MIT Traffic is a dataset for research on activity analysis and crowded scenes. It includes a traffic video sequence of 90 minutes long. It is recorded by a stationary camera. The size of the scene is 720 by 480 and it is divided into 20 clips.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main aim of this dataset is to enable detection of traffic congestion from surveillance cameras using one-stage object detectors. The dataset contains congested and uncongested traffic scenes with their respective labels. This dataset is collected from different surveillance cameras video footage. To prepare the dataset frames are extracted from video sources and resized to a dimension of 500 x 500 with .jpg image format. To Annotate, the image LabelImg software has used. The format of the label is .txt with the same name as the image. The dataset is mainly prepared for YOLO Models but it can be converted to other models format.
Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
New York City Department of Transportation (NYC DOT) uses Automated Traffic Recorders (ATR) to collect traffic sample volume counts at bridge crossings and roadways. These counts do not cover the entire year, and the number of days counted per location may vary from year to year. Also see Automated Traffic Volume Counts: https://data.cityofnewyork.us/Transportation/Automated-Traffic-Volume-Counts/7ym2-wayt
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.
~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.
~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.
~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.
The census count of vehicles on city streets is normally reported in the form of Average Daily Traffic (ADT) counts. These counts provide a good estimate for the actual number of vehicles on an average weekday at select street segments. Specific block segments are selected for a count because they are deemed as representative of a larger segment on the same roadway. ADT counts are used by transportation engineers, economists, real estate agents, planners, and others professionals for planning and operational analysis. The frequency for each count varies depending on City staff’s needs for analysis in any given area. This report covers the counts taken in our City during the past 12 years approximately.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are a few use cases for this project:
Autonomous Vehicles Navigation: The "Carla traffic dataset" can be used to develop and improve algorithms for autonomous vehicles, enabling them to effectively identify other road users, traffic lights, and various traffic signs, improving the cars’ ability to navigate safely in different weather conditions including fog.
Traffic Management Systems: The dataset could be leveraged to create advanced traffic management systems, identifying car, bike, or pedestrian movement, detecting traffic light states, and understanding if road users respect speed limits (30, 60, 90 km/h signs). This could improve urban traffic flow and increase overall road safety.
Driver Assistance Systems: The dataset could be used to develop advanced driver assistance systems (ADAS) that could alert drivers of pedestrians, other vehicles, traffic signs, and the status of traffic lights, particularly in foggy or difficult conditions.
Safety Testing for Vehicle Manufacturers: Companies manufacturing cars, bikes, or motorbikes could use the data to carry out safety testing under different situations, including different weather conditions and traffic light changes.
Virtual Driving Simulation: Game developers or driving schools could use this model to develop realistic driving simulations. The players or trainee drivers would need to respond correctly and promptly to real-world traffic situations like recognizing speed signs, traffic lights, and other road users.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Linear network representing the estimated traffic flows for roads and highways managed by the Ministry of Transport and Sustainable Mobility (MTMD). These flows are obtained using a statistical estimation method applied to data from more than 4,500 collection sites spread over the main roads of Quebec. It includes DJMA (annual average daily flow), DJME (summer average daily flow), DJME (summer average daily flow (June, July, August, September) and DJMH (average daily winter flow (December, January, February, March) as well as other traffic data. It is important to note that these values are calculated for total traffic directions. Interactive map: Some files are accessible by querying a section of traffic à la carte with a click (the file links are displayed in the descriptive table that is displayed when clicking): • Historical aggregated data (PDF) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel)**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.
This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab. The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.
This web map contains traffic point and polygon layers from OSM (OpenStreetMap) in India and contains information about crossing, dam, fuel, lock gate etc.OSM is a collaborative, open project to create a freely available and editable map of the world. Geographic information about streets, rivers, borders, points of interest and areas are collected worldwide and stored in a freely accessible database. Everyone can participate and contribute to OSM. The geographic information available on OSM relies entirely on volunteers or contributors.The attributes are given below:CrossingDamFuelLock GateMarinaMini RoundaboutMotorway JunctionParkingParking BicycleParking MultistoreyParking UndergroundPierServiceSlipwaySpeed CameraStopStreet LampTraffic SignalsTurning CircleWaterfallWeirThese map layers are offered by Esri India Content. The content team updates the map layers quarterly. If you have any questions or comments, please let us know via content@esri.in.
Q-Traffic is a large-scale traffic prediction dataset, which consists of three sub-datasets: query sub-dataset, traffic speed sub-dataset and road network sub-dataset.
Feature layer containing authoritative traffic count points for the traffic model for Sioux Falls, South Dakota. The data in the traffic counts model feature layer is collected for traffic count modeling and transportation planning. This data is collected on a five-to-seven-year basis, with data from 2001, 2008, 2013, 2018, and 2023. The traffic counts are 24-hour, weekday, two-directional counts. Traffic counts are normally collected during the summer months, but may be taken any season, as weather permits. The traffic counts are factored by the day of the week as well as by the month of the year to become an Average Annual Daily Total (AADT). Traffic volumes (i.e., count data) can fluctuate depending on the month, week, day of collection, the weather, type of road surface, nearby construction, etc. All the historical data should be averaged to reflect the "normal" traffic count. More specific count data (time, date, hourly volume) can be obtained from the Sioux Falls Engineering Division at 605-367-8601.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are a few use cases for this project:
Traffic Flow Analysis: The dataset can be used in machine learning models to analyze traffic flow in cities. It can identify the type of vehicles on the city roads at different times of the day, helping in planning and traffic management.
Vehicle Class Based Toll Collection: Toll booths can use this model to automatically classify and charge vehicles based on their type, enabling a more efficient and automated system.
Parking Management System: Parking lot owners can use this model to easily classify vehicles as they enter for better space management. Knowing the vehicle type can help assign it to the most suitable parking spot.
Traffic Rule Enforcement: The dataset can be used to create a computer vision model to automatically detect any traffic violations like wrong lane driving by different vehicle types, and notify law enforcement agencies.
Smart Ambulance Tracking: The system can help in identifying and tracking ambulances and other emergency vehicles, enabling traffic management systems to provide priority routing during emergencies.