100+ datasets found
  1. COVID-19 Dataset

    • kaggle.com
    zip
    Updated Nov 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meir Nizri (2022). COVID-19 Dataset [Dataset]. https://www.kaggle.com/datasets/meirnizri/covid19-dataset
    Explore at:
    zip(4890659 bytes)Available download formats
    Dataset updated
    Nov 13, 2022
    Authors
    Meir Nizri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.

    The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.

    content

    The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.

    • sex: 1 for female and 2 for male.
    • age: of the patient.
    • classification: covid test findings. Values 1-3 mean that the patient was diagnosed with covid in different degrees. 4 or higher means that the patient is not a carrier of covid or that the test is inconclusive.
    • patient type: type of care the patient received in the unit. 1 for returned home and 2 for hospitalization.
    • pneumonia: whether the patient already have air sacs inflammation or not.
    • pregnancy: whether the patient is pregnant or not.
    • diabetes: whether the patient has diabetes or not.
    • copd: Indicates whether the patient has Chronic obstructive pulmonary disease or not.
    • asthma: whether the patient has asthma or not.
    • inmsupr: whether the patient is immunosuppressed or not.
    • hypertension: whether the patient has hypertension or not.
    • cardiovascular: whether the patient has heart or blood vessels related disease.
    • renal chronic: whether the patient has chronic renal disease or not.
    • other disease: whether the patient has other disease or not.
    • obesity: whether the patient is obese or not.
    • tobacco: whether the patient is a tobacco user.
    • usmr: Indicates whether the patient treated medical units of the first, second or third level.
    • medical unit: type of institution of the National Health System that provided the care.
    • intubed: whether the patient was connected to the ventilator.
    • icu: Indicates whether the patient had been admitted to an Intensive Care Unit.
    • date died: If the patient died indicate the date of death, and 9999-99-99 otherwise.
  2. G

    People who are at high risk for severe illness from COVID-19

    • open.canada.ca
    • data.urbandatacentre.ca
    html
    Updated Sep 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Health Agency of Canada (2021). People who are at high risk for severe illness from COVID-19 [Dataset]. https://open.canada.ca/data/en/dataset/44a4c02d-6a85-4cb7-a57f-8a9ed90d3acb
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 24, 2021
    Dataset provided by
    Public Health Agency of Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    While diseases can make anyone sick, some Canadians are more at risk of developing severe complications from an illness due to underlying medical conditions and age. If you are at risk for complications, you can take action to reduce your risk of getting sick from COVID-19.

  3. s

    CoVid Plots and Analysis

    • figshare.shef.ac.uk
    • datasetcatalog.nlm.nih.gov
    • +2more
    gif
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colin Angus (2023). CoVid Plots and Analysis [Dataset]. http://doi.org/10.15131/shef.data.12328226.v3
    Explore at:
    gifAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    The University of Sheffield
    Authors
    Colin Angus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID-19Plots and analysis relating to the coronavirus pandemic. Includes five sets of plots and associated R code to generate them.1) HeatmapsUpdated every few days - heatmaps of COVID-19 case and death trajectories for Local Authorities (or equivalent) in England, Wales, Scotland, Ireland and Germany.2) All cause mortalityUpdated on Tuesday (for England & Wales), Wednesday (for Scotland) and Friday (for Northern Ireland) - analysis and plots of weekly all-cause deaths in 2020 compared to previous years by country, age, sex and region. Also a set of international comparisons using data from mortality.org3) ExposuresNo longer updated - mapping of potential COVID-19 mortality exposure at local levels (LSOAs) in England based on the age-sex structure of the population and levels of poor health.There is also a Shiny app which creates slightly lower resolution versions of the same plots online, which you can find here: https://victimofmaths.shinyapps.io/covidmapper/, on GitHub https://github.com/VictimOfMaths/COVIDmapper and uploaded to this record4) Index of Multiple Deprivation No longer updated - preliminary analysis of the inequality impacts of COVID-19 based on Local Authority level cases and levels of deprivation. 5) Socioeconomic inequalities. No longer updated (unless ONS release more data) - Analysis of published ONS figures of COVID-19 and other cause mortality in 2020 compared to previous years by deprivation decile.Latest versions of plots and associated analysis can be found on Twitter: https://twitter.com/victimofmathsThis work is described in more detail on the UK Data Service Impact and Innovation Lab blog: http://lab.ukdataservice.ac.uk/2020/05/21/visualising-high-risk-areas-for-covid-19-mortality/Adapted from data from the Office for National Statistics licensed under the Open Government Licence v.1.0.http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

  4. f

    Table_1_“Low-risk groups” deserve more attention than “high-risk groups” in...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dong, Xiaomei; Zhao, Zedi; Tan, Ying; Chen, Jin; Chen, Xiongfei; Zheng, Wanshan (2023). Table_1_“Low-risk groups” deserve more attention than “high-risk groups” in imported COVID-19 cases.docx [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001059005
    Explore at:
    Dataset updated
    Nov 30, 2023
    Authors
    Dong, Xiaomei; Zhao, Zedi; Tan, Ying; Chen, Jin; Chen, Xiongfei; Zheng, Wanshan
    Description

    ObjectiveTo estimate the optimal quarantine period for inbound travelers and identify key risk factors to provide scientific reference for emerging infectious diseases.MethodsA parametric survival analysis model was used to calculate the time interval between entry and first positive nucleic acid test of imported cases in Guangzhou, to identify the influencing factors. And the COVID-19 epidemic risk prediction model based on multiple risk factors among inbound travelers was constructed.ResultsThe approximate 95th percentile of the time interval was 14 days. Multivariate analysis found that the mean time interval for inbound travelers in entry/exit high-risk occupations was 29% shorter (OR 0.29, 95% CI 0.18–0.46, p < 0.0001) than that of low-risk occupations, those from Africa were 37% shorter (OR 0.37, 95% CI 0.17–0.78, p = 0.01) than those from Asia, those who were fully vaccinated were 1.88 times higher (OR 1.88, 95% CI 1.13–3.12, p = 0.01) than that of those who were unvaccinated, and those in other VOC periods were lower than in the Delta period. Decision tree analysis showed that a combined entry/exit low-risk occupation group with Delta period could create a high indigenous epidemic risk by 0.24.ConclusionDifferent strata of imported cases can result in varying degrees of risk of indigenous outbreaks. “low-risk groups” with entry/exit low-risk occupations, fully vaccinated, or from Asia deserve more attention than “high-risk groups.”

  5. US Covid 19 Risk Assessment Data

    • kaggle.com
    zip
    Updated Apr 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Tourkistas (2020). US Covid 19 Risk Assessment Data [Dataset]. https://www.kaggle.com/jtourkis/covid19-us-major-city-density-data
    Explore at:
    zip(17414 bytes)Available download formats
    Dataset updated
    Apr 5, 2020
    Authors
    James Tourkistas
    Area covered
    United States
    Description

    Context

    Dataset aims to facilitate a state by state comparison of potential risk factors that may heighten Covid 19 transmission rates or deaths. It includes state by state estimates of: covid 19 positives/deaths, flu/pneumonia deaths, major city population densities, available hospital resources, high risk health condition prevalance, population over 60, means of work transportation rates, housing characteristics (ie number of large apartment complexes/seniors living alone), and industry information.

    Content

    The Data Includes:

    1) Covid 19 Outcome Stats:

    Covid_Death : Covid Deaths by State

    Covid_Positive : Covid Positive Tests by State

    2) US Major City Population Density by State: CBSA_Major_City_max_weighted_density

    3) KFF Estimates of Total Hospital Beds by State:

    Kaiser_Total_Hospital_Beds

    4) 2018 Season Flu and Pneumonia Death Stats:

    FLUVIEW_TOTAL_PNEUMONIA_DEATHS_Season_2018

    FLUVIEW_TOTAL_INFLUENZA_DEATHS_Season_2018

    5)US Total Rates of Flu Hospitalization by Underlying Condition:

    Fluview_US_FLU_Hospitalization_Rate_....

    6) State by State BRFSS Prevalance Rates of Conditions Associated with Higher Flu Hospitalization Rates

    BRFSS_Diabetes_Prevalance BRFSS_Asthma_Prevalance BRFSS_COPD_Prevalance
    BRFSS_Obesity BMI Prevalance BRFSS_Other_Cancer_Prevalance BRFSS_Kidney_Disease_Prevalance BRFSS_Obesity BMI Prevalance BRFSS_2017_High_Cholestoral_Prevalance BRFSS_2017_High_Blood_Pressure_Prevalance Census_Population_Over_60

    7)State by state breakdown of Means of Work Transpotation:

    COMMUTE_Census_Worker_Public_Transportation_Rate

    8) State by state breakdown of Housing Characteristics

    9) State by State breakdown of Industry Information

    Acknowledgements

    Links to data sources:

    https://worldpopulationreview.com/states/

    https://covidtracking.com/data/

    https://gis.cdc.gov/GRASP/Fluview/FluHospRates.html https://www.kff.org/health-costs/issue-brief/state-data-and-policy-actions-to-address-coronavirus/#stateleveldata

    https://data.census.gov/cedsci/table?q=United%20States&tid=ACSDP1Y2018.DP05&hidePreview=true&vintage=2018&layer=VT_2018_040_00_PY_D1&cid=S0103_C01_001E

    Census Tables: ACSST1Y2018.S1811 ACSST1Y2018.S0102 ACSST1Y2018.S2403 ACSST1Y2018.S2501 ACSST1Y2018.S2504

    https://www.census.gov/library/visualizations/2012/dec/c2010sr-01-density.html

    https://gis.cdc.gov/grasp/fluview/mortality.html

    Inspiration

    I hope to show the existence of correlations that warrant a deeper county by county analysis to identify areas of increased risk requiring increased resource allocation or increased attention to preventative measures.

  6. Data from: COVID-19 Case Surveillance Public Use Data with Geography

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated May 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). COVID-19 Case Surveillance Public Use Data with Geography [Dataset]. https://catalog.data.gov/dataset/covid-19-case-surveillance-public-use-data-with-geography-0605b
    Explore at:
    Dataset updated
    May 8, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors. Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 32 data element restricted access dataset. The following apply to the public use datasets and the restricted access dataset: - Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. - Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. - Some data are suppressed to protect individual privacy. - Datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensure that time-dependent outcome data are accurately captured. - Datasets are updated monthly. - Datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. - For more information about data collection and reporting, please see wwwn.cdc.gov/nndss/data-collection.html. - For more information about the COVID-19 case surveillance data, please see www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html. Overview The COVID-19 case surveillance database includes patient-level data reported by U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as "immediately notifiable, urgent (within 24 hours)" by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data collected by jurisdictions are shared voluntarily with CDC. For more information, visit: wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/. COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by pu

  7. Taiwan Covid-19 Vaccination Data

    • kaggle.com
    zip
    Updated Oct 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jane Su (2021). Taiwan Covid-19 Vaccination Data [Dataset]. https://www.kaggle.com/jane92792/taiwan-covid19-vaccination-data
    Explore at:
    zip(1596308 bytes)Available download formats
    Dataset updated
    Oct 20, 2021
    Authors
    Jane Su
    Area covered
    Taiwan
    Description

    This dataset contains Taiwan citizen Covid-19 vaccinations in the last couple of months.

    Column description:

    • Estimated amount of remaining dose/bottle: = (actual delivery amount - actual amount of vaccinations)
    • Location: name of the country (or region within a country)
    • Vaccination_group: Taiwan government provide publicly funded vaccine for 10 prioritized groups, including healthcare workers; central and local government epidemic prevention personnel; frontline workers with a high risk coming into contact with COVID-19; those who need to travel abroad; law enforcement officers and firefighters; volunteers, long-term caretakers, and care recipients at social welfare organizations; national security personnel; adults ages 65 and above; adults ages 19 to 65 with life-threatening conditions, rare diseases, or a history of serious illness; and Adults between the ages of 50 and 64
    • Acceptable_vaccine_manufacturer: the vaccine manufacturer that people are willing to take

    Reference

    https://nidss.cdc.gov.tw/en/nndss/disease?id=19CoV "Taiwan%20Covid-19%20Dashboard%20-%20Vaccination">https://covid-19.nchc.org.tw/dt_002-csse_covid_19_daily_reports_vaccine_city2.php?language=zh-tw&language=en

  8. d

    Long Term Care Dashboard COVID-19 Impacts

    • catalog.data.gov
    • data.kingcounty.gov
    Updated Feb 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2024). Long Term Care Dashboard COVID-19 Impacts [Dataset]. https://catalog.data.gov/dataset/long-term-care-dashboard-covid-19-impacts
    Explore at:
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    data.kingcounty.gov
    Description

    Updated weekly on Thursdays Older adults and people with disabilities who live in long term care facilities are at high risk for COVID-19 illness and death. The data below describes the impacts of COVID-19 on the residents and staff of Long Term Care Facilities licensed by the State Department of Social and Health Services (DSHS), including Skilled Nursing Facilities (nursing homes); Adult Family Homes and Assisted Living Facilities. Cases and deaths are also occurring in other forms of senior housing not licensed by DSHS, including subsidized housing for people age 50+, Permanent Supportive Housing, and naturally occurring retirement communities (NORCs) and among people with disabilities living in Supportive Living Facilities (also licensed by DSHS).

  9. G

    People who are at high risk for severe illness from COVID-19

    • open.canada.ca
    • data.urbandatacentre.ca
    html
    Updated Aug 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Health Agency of Canada (2020). People who are at high risk for severe illness from COVID-19 [Dataset]. https://open.canada.ca/data/info/2e96f29a-e8d9-4d27-898c-7017df3a30f2
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 4, 2020
    Dataset provided by
    Public Health Agency of Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Some Canadians are at risk of developing severe complications from an illness due to underlying medical conditions and age. If you are at risk for complications, you can take action to reduce your risk of getting sick from COVID-19.

  10. U.S. State, Territorial, and County Stay-At-Home Orders: March 15-May 5 by...

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). U.S. State, Territorial, and County Stay-At-Home Orders: March 15-May 5 by County by Day [Dataset]. https://catalog.data.gov/dataset/u-s-state-territorial-and-county-stay-at-home-orders-march-15-may-5-county-and-july-7-stat
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    State, territorial, and county executive orders, administrative orders, resolutions, and proclamations are collected from government websites and cataloged and coded using Microsoft Excel by one coder with one or more additional coders conducting quality assurance. Data were collected to determine when individuals in states, territories, and counties were subject to executive orders, administrative orders, resolutions, and proclamations for COVID-19 that require or recommend people stay in their homes. These data are derived from the publicly available state, territorial, and county executive orders, administrative orders, resolutions, and proclamations (“orders”) for COVID-19 that expressly require or recommend individuals stay at home found by the CDC, COVID-19 Community Intervention and At-Risk Task Force, Monitoring and Evaluation Team & CDC, Center for State, Tribal, Local, and Territorial Support, Public Health Law Program from March 15 through May 5, 2020. These data will be updated as new orders are collected. Any orders not available through publicly accessible websites are not included in these data. Only official copies of the documents or, where official copies were unavailable, official press releases from government websites describing requirements were coded; news media reports on restrictions were excluded. Recommendations not included in an order are not included in these data. These data do not include mandatory business closures, curfews, or limitations on public or private gatherings. These data do not necessarily represent an official position of the Centers for Disease Control and Prevention.

  11. Additional Datasets for Explaining COVID-19

    • kaggle.com
    zip
    Updated Apr 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris Chow (2020). Additional Datasets for Explaining COVID-19 [Dataset]. https://www.kaggle.com/datasets/chrischow/demographic-factors-for-explaining-covid19/discussion
    Explore at:
    zip(884897 bytes)Available download formats
    Dataset updated
    Apr 5, 2020
    Authors
    Chris Chow
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction

    This page comprises the additional datasets used for the COVID-19 Global Forecasting Challenge (currently in week 3). Only datasets that have not been hosted on Kaggle will be uploaded here: * Oxford COVID-19 Government Response Tracker * Assessment Capacities Project COVID-19 Government Measures

    UPDATE: Please see my notebook on the COVID-19 Global Forecasting Challenge (Week 3) competition here for merging the data.

    Oxford COVID-19 Government Response Tracker

    The Oxford COVID-19 Government Response Tracker (OxCGRT) provides a systematic cross-national, cross-temporal measure to understand how government responses have evolved over the full period of the disease’s spread. The project tracks governments’ policies and interventions across a standardized series of indicators and creates a composite index to measure the stringency of these responses. Data is collected and updated in real time by a team of dozens of students and staff at Oxford University. Read the white paper here. Access the OxCGRT website here.

    Indicators

    The OxCGRT tracks 11 indicators of government response:

    1. School closing (with geographic scope)
      • Ordinal scale:
        • 0 = No measures
        • 1 = Recommend closing
        • 2 = Require closing
    2. Workplace closing (with geographic scope)
      • Ordinal scale:
        • 0 = No measures
        • 1 = Recommend closing
        • 2 = Require closing
    3. Cancel public events (with geographic scope)
      • Ordinal scale:
        • 0 = No measures
        • 1 = Recommend cancelling
        • 2 = Require cancelling
    4. Close public transport (with geographic scope)
      • Ordinal scale:
        • 0 = No measures
        • 1 = Recommend closing
        • 2 = Require closing
    5. Public info campaigns(with geographic scope)
      • Ordinal scale:
        • 0 = No COVID-10 public information campaign
        • 1 = COVID-10 public information campaign
    6. Restrictions on internal movement (with geographic scope)
      • Ordinal scale:
        • 0 = No measures
        • 1 = Recommend movement restriction
        • 2 = Restricted movement
    7. International travel controls
      • Ordinal scale:
        • 0 = No measures
        • 1 = Screening
        • 2 = Quarantine on high-risk regions
        • 3 = Ban on high-risk regions
    8. Fiscal measures
      • Value of fiscal stimuli in USD
    9. Monetary measures
      • Value of interest rate in %
    10. Emergency investment in health care
      • Value of new short-term spending on health in USD
    11. Investment in vaccines
      • Value of investment in USD

    Indicators with geographic scope are coded in the following way: - 0 = Targeted - 1 = General

    The Assessment Capacities Project (ACAPS) COVID-19 Government Measures Dataset

    This dataset comprises government measures and descriptions of these measures by country and date. The measures include:

    1. Social distancing
    2. Movement restrictions
    3. Public health measures
    4. Social and economic measures
    5. Lockdowns

    Descriptors of these measures include: - Date of implementation - Specific measure - Penalties for non-compliance - Source (e.g. government, media)

  12. O

    CDC COVID-19 Community Levels by County

    • opendata.ramseycountymn.gov
    csv, xlsx, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for Disease Control and Prevention (2025). CDC COVID-19 Community Levels by County [Dataset]. https://opendata.ramseycountymn.gov/Public-Health/CDC-COVID-19-Community-Levels-by-County/uazb-iwdp
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    Center for Disease Control and Prevention
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties. This dataset contains the same values used to display information available on the COVID Data Tracker at: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels The data are updated weekly.

    CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium, or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    For more details on the Minnesota Department of Health COVID-19 thresholds, see COVID-19 Public Health Risk Measures: Data Notes (Updated 4/13/22). https://mn.gov/covid19/assets/phri_tcm1148-434773.pdf

    Note: This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022. March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released. March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate. March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset. March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases. March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average). March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior. April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

  13. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • data.virginia.gov
    • +7more
    csv, xlsx, xml
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/widgets/vbim-akqf
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  14. Country data on COVID-19

    • kaggle.com
    zip
    Updated Aug 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carla Oliveira (2023). Country data on COVID-19 [Dataset]. https://www.kaggle.com/datasets/carlaoliveira/country-data-on-covid19
    Explore at:
    zip(8634707 bytes)Available download formats
    Dataset updated
    Aug 6, 2023
    Authors
    Carla Oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The data is in CSV format and includes all historical data on the pandemic up to 03/01/2023, following a 1-line format per country and date.

    In the pre-processing of these data, missing data were checked. It was observed, for example, that the missing data referring to new_cases was where the total number of cases had not been changed and that most of the missing data related to vaccination, which actually at the beginning of the pandemic there was no data. Therefore, to solve these cases of missing data it was decided to replace the data containing “NaN” by zero. Some of these features were combined to generate new features. This process that creates new features (data) from existing data, aiming to improve the data before applying machine learning algorithms, is called feature engineering. The new features created were: - Vaccination rate (vaccination_ratio'): total number of people who received at least one dose of vaccine divided by the population at risk. This dose number was chosen because it has a higher correlation with new deaths. - Prevalence: existing cases of the disease at a given time divided by the population at risk of having the disease. Formula: COVID-19 cases ÷ Population at risk * 100. Example: 168,331 ÷ 210,000,000 * 100 = 0.08. - Incidence: new cases of the disease in a defined population during a specific period (one day, for example) divided by the population at risk. Formula: New COVID-19 cases in one day ÷ Population - Total cases * 100. Example: 5,632 ÷ 209,837,301 * 100 = 0.0026.

  15. COVID-19 Outcomes by Vaccination Status

    • kaggle.com
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik D (2024). COVID-19 Outcomes by Vaccination Status [Dataset]. https://www.kaggle.com/datasets/kirbysasuke/covid-19
    Explore at:
    zip(90174 bytes)Available download formats
    Dataset updated
    Jul 2, 2024
    Authors
    Kaushik D
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchic

  16. Coronavirus and treatments for people at highest risk in England: 11 to 25...

    • gov.uk
    Updated Jul 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Coronavirus and treatments for people at highest risk in England: 11 to 25 May 2022 [Dataset]. https://www.gov.uk/government/statistics/coronavirus-and-treatments-for-people-at-highest-risk-in-england-11-to-25-may-2022
    Explore at:
    Dataset updated
    Jul 7, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for National Statistics
    Area covered
    England
    Description

    Official statistics are produced impartially and free from political influence.

  17. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • healthdata.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://healthdata.gov/w/894y-jyp5/default?cur=dwO3erkKZG1
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  18. f

    Table_1_Classification Schemes of COVID-19 High Risk Areas and Resulting...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Feb 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Uthman, Olalekan A.; Hanefeld, Johanna; Al-Awlaqi, Sameh; Adetokunboh, Olatunji O.; Wiysonge, Charles Shey; Bcheraoui, Charbel El (2022). Table_1_Classification Schemes of COVID-19 High Risk Areas and Resulting Policies: A Rapid Review.DOCX [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000199199
    Explore at:
    Dataset updated
    Feb 25, 2022
    Authors
    Uthman, Olalekan A.; Hanefeld, Johanna; Al-Awlaqi, Sameh; Adetokunboh, Olatunji O.; Wiysonge, Charles Shey; Bcheraoui, Charbel El
    Description

    The COVID-19 pandemic has posed a significant global health threat since January 2020. Policies to reduce human mobility have been recognized to effectively control the spread of COVID-19; although the relationship between mobility, policy implementation, and virus spread remains contentious, with no clear pattern for how countries classify each other, and determine the destinations to- and from which to restrict travel. In this rapid review, we identified country classification schemes for high-risk COVID-19 areas and associated policies which mirrored the dynamic situation in 2020, with the aim of identifying any patterns that could indicate the effectiveness of such policies. We searched academic databases, including PubMed, Scopus, medRxiv, Google Scholar, and EMBASE. We also consulted web pages of the relevant government institutions in all countries. This rapid review's searches were conducted between October 2020 and December 2021. Web scraping of policy documents yielded additional 43 country reports on high-risk area classification schemes. In 43 countries from which relevant reports were identified, six issued domestic classification schemes. International classification schemes were issued by the remaining 38 countries, and these mainly used case incidence per 100,000 inhabitants as key indicator. The case incidence cut-off also varied across the countries, ranging from 20 cases per 100,000 inhabitants in the past 7 days to more than 100 cases per 100,000 inhabitants in the past 28 days. The criteria used for defining high-risk areas varied across countries, including case count, positivity rate, composite risk scores, community transmission and satisfactory laboratory testing. Countries either used case incidence in the past 7, 14 or 28 days. The resulting policies included restrictions on internal movement and international travel. The quarantine policies can be summarized into three categories: (1) 14 days self-isolation, (2) 10 days self-isolation and (3) 14 days compulsory isolation.

  19. f

    Data from: Pre-Exposure Prophylaxis with Various Doses of Hdroxychloroquine...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated May 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Musarrat, Saira; Niazi, Rauf; Arshad, Junaid; Ashraf, Sadia; Hashmi, Ume Laila; Batool, Sadia; Arif, Mohammad Ali; Bin Baqar, Jaffer; Syed, Fibhaa (2021). Pre-Exposure Prophylaxis with Various Doses of Hdroxychloroquine among high-risk COVID 19 Healthcare Personnel: CHEER randomized controlled trial. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000766638
    Explore at:
    Dataset updated
    May 11, 2021
    Authors
    Musarrat, Saira; Niazi, Rauf; Arshad, Junaid; Ashraf, Sadia; Hashmi, Ume Laila; Batool, Sadia; Arif, Mohammad Ali; Bin Baqar, Jaffer; Syed, Fibhaa
    Description

    A Phase II, randomized, placebo-controlled clinical trial (Clinicaltrials.gov NCT04359537) was conducted at SZABMU/PIMS to evaluate the comparative efficacy of various HCQ doses in preventing COVID-19 among high-risk healthcare workers. Enrolment began on 1st May 2020, and the intervention continued for a total of 12 weeks. A total of 228 participants were initially enrolled (Figure 1); of them, 28 were ineligible and excluded. Participants fulfilling the eligibility criteria were randomized into the four treatment groups. Group 1 participants (n=48) were intervened with HCQ 400 mg (locally manufactured by Getz Pharma) twice a day on day 1 followed by 400 mg weekly. Group 2 (n=51) participants were given HCQ 400 mg once every 3 weeks, group 3 (n=55) administered HCQ 200 mg once every 3 weeks and participants in the control group received placebo (n=46). The baseline characteristics of all participants, including age, gender, role, comorbidities, and drug records, were obtained. COVID-19 related symptoms and adverse events (AEs) from the drug were self-reported by the enrolled participant during the study period. The COVID-19 exposure and preventive practices were monitored on a monthly basis. Disease severity was assessed through ordinal scale i.e. no illness (score=1), illness with outpatient observation (score=2), hospitalization (or post-hospital discharge) (score=3), hospitalization with ICU stay (score=4) and death from COVID 19 (score=5). All participants exhibiting COVID-19 symptoms were tested for SARS-CoV-2 during the study and also by the end of the 12th week, with PCR or IgM and IgG serology (as per accessibility).The primary endpoint was to evaluate the COVID-19-free survival among the participants by the end of the study. The secondary endpoints were to evaluate the proportion of rRT-PCR positive COVID-19 cases, the role of exposure and preventive practices, the frequency of COVID-related symptoms, treatment-related side effects, the incidence of all-cause study medicine discontinuation, and maximum disease severity during the study treatment.The study protocol was approved by the ethical review board of Shaheed Zulfiqar Ali Bhutto Medical University (Reference no. 1-1/2015/ERB/SZABMU/549; Dated 20 April 2020), and written informed consents were acquired from the participants before inclusion.

  20. COVID-19: socio-economic risk factors briefing - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2020). COVID-19: socio-economic risk factors briefing - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/covid-19-socio-economic-risk-factors-briefing
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Coronavirus affects some members of the population more than others. Emerging evidence suggests that older people, men, people with health conditions such as respiratory and pulmonary conditions, and people of a Black, Asian Minority Ethnic (BAME) background are at particular risk. There are also a number of other wider public health risk factors that have been found to increase the likelihood of an individual contracting coronavirus. This briefing presents descriptive evidence on a range of these factors, seeking to understand at a London-wide level the proportion of the population affected by each.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Meir Nizri (2022). COVID-19 Dataset [Dataset]. https://www.kaggle.com/datasets/meirnizri/covid19-dataset
Organization logo

COVID-19 Dataset

COVID-19 patient's symptoms, status, and medical history.

Explore at:
28 scholarly articles cite this dataset (View in Google Scholar)
zip(4890659 bytes)Available download formats
Dataset updated
Nov 13, 2022
Authors
Meir Nizri
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Context

Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.

The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.

content

The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.

  • sex: 1 for female and 2 for male.
  • age: of the patient.
  • classification: covid test findings. Values 1-3 mean that the patient was diagnosed with covid in different degrees. 4 or higher means that the patient is not a carrier of covid or that the test is inconclusive.
  • patient type: type of care the patient received in the unit. 1 for returned home and 2 for hospitalization.
  • pneumonia: whether the patient already have air sacs inflammation or not.
  • pregnancy: whether the patient is pregnant or not.
  • diabetes: whether the patient has diabetes or not.
  • copd: Indicates whether the patient has Chronic obstructive pulmonary disease or not.
  • asthma: whether the patient has asthma or not.
  • inmsupr: whether the patient is immunosuppressed or not.
  • hypertension: whether the patient has hypertension or not.
  • cardiovascular: whether the patient has heart or blood vessels related disease.
  • renal chronic: whether the patient has chronic renal disease or not.
  • other disease: whether the patient has other disease or not.
  • obesity: whether the patient is obese or not.
  • tobacco: whether the patient is a tobacco user.
  • usmr: Indicates whether the patient treated medical units of the first, second or third level.
  • medical unit: type of institution of the National Health System that provided the care.
  • intubed: whether the patient was connected to the ventilator.
  • icu: Indicates whether the patient had been admitted to an Intensive Care Unit.
  • date died: If the patient died indicate the date of death, and 9999-99-99 otherwise.
Search
Clear search
Close search
Google apps
Main menu