100+ datasets found
  1. Configuring Esri Collector for High-Accuracy Data Collection

    • storymaps-k12.hub.arcgis.com
    Updated Aug 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri K12 GIS Organization (2021). Configuring Esri Collector for High-Accuracy Data Collection [Dataset]. https://storymaps-k12.hub.arcgis.com/documents/87aa0376199346e4b956cb29ff9c1a5f
    Explore at:
    Dataset updated
    Aug 6, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri K12 GIS Organization
    Description

    Summary: How to configure Esri Collector for ArcGIS with a Bad Elf GPS Receiver for High-Accuracy Field Data Collection Storymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) 1: Standard 1-LS3-1 - Heredity: Inheritance and Variation of Traits - Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parentsGrade level(s) 4: Standard 4-ESS2-2 - Earth’s Systems - Analyze and interpret data from maps to describe patterns of Earth’s featuresGrade level(s) 5: Standard 5-ESS1-2 - Earth’s Place in the Universe - Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night skyGrade level(s) 6-8: Standard MS-LS4-5 - Biological Evolution: Unity and Diversity - Gather and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms.Grade level(s) 6-8: Standard MS-LS4-6 - Biological Evolution: Unity and Diversity - Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over timeGrade level(s) 6-8: Standard MS-ESS1-3 - Earth’s Place in the Universe - Analyze and interpret data to determine scale properties of objects in the solar systemGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 9-12: Standard HS-LS4-4 - Biological Evolution: Unity and Diversity - Construct an explanation based on evidence for how natural selection leads to adaptation of populationsGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Most frequently used words:featurebadelfselectgpsApproximate Flesch-Kincaid reading grade level: 9.9. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.

  2. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  3. a

    Service Locations

    • gisdata-apexnc.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jan 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Apex, North Carolina (2025). Service Locations [Dataset]. https://gisdata-apexnc.opendata.arcgis.com/datasets/service-locations
    Explore at:
    Dataset updated
    Jan 5, 2025
    Dataset authored and provided by
    Town of Apex, North Carolina
    Area covered
    Description

    The construction of this data model was adapted from the Telvent Miner & Miner ArcFM MultiSpeak data model to provide interface functionality with Milsoft Utility Solutions WindMil engineering analysis program. Database adaptations, GPS data collection, and all subsequent GIS processes were performed by Southern Geospatial Services for the Town of Apex Electric Utilities Division in accordance to the agreement set forth in the document "Town of Apex Electric Utilities GIS/GPS Project Proposal" dated March 10, 2008. Southern Geospatial Services disclaims all warranties with respect to data contained herein. Questions regarding data quality and accuracy should be directed to persons knowledgeable with the forementioned agreement.The data in this GIS with creation dates between March of 2008 and April of 2024 were generated by Southern Geospatial Services, PLLC (SGS). The original inventory was performed under the above detailed agreement with the Town of Apex (TOA). Following the original inventory, SGS performed maintenance projects to incorporate infrastructure expansion and modification into the GIS via annual service agreements with TOA. These maintenances continued through April of 2024.At the request of TOA, TOA initiated in house maintenance of the GIS following delivery of the final SGS maintenance project in April of 2024. GIS data created or modified after April of 2024 are not the product of SGS.With respect to SGS generated GIS data that are point features:GPS data collected after January 1, 2013 were surveyed using mapping grade or survey grade GPS equipment with real time differential correction undertaken via the NC Geodetic Surveys Real Time Network (VRS). GPS data collected prior to January 1, 2013 were surveyed using mapping grade GPS equipment without the use of VRS, with differential correction performed via post processing.With respect to SGS generated GIS data that are line features:Line data in the GIS for overhead conductors were digitized as straight lines between surveyed poles. Line data in the GIS for underground conductors were digitized between surveyed at grade electric utility equipment. The configurations and positions of the underground conductors are based on TOA provided plans. The underground conductors are diagrammatic and cannot be relied upon for the determination of the actual physical locations of underground conductors in the field.The Service Locations feature class was created by Southern Geospatial Services (SGS) from a shapefile of customer service locations generated by dataVoice International (DV) as part of their agreement with the Town of Apex (TOA) regarding the development and implemention of an Outage Management System (OMS).Point features in this feature class represent service locations (consumers of TOA electric services) by uniquely identifying the features with the same unique identifier as generated for a given service location in the TOA Customer Information System (CIS). This is also the mechanism by which the features are tied to the OMS. Features are physically located in the GIS based on CIS address in comparison to address information found in Wake County GIS property data (parcel data). Features are tied to the GIS electric connectivity model by identifying the parent feature (Upline Element) as the transformer that feeds a given service location.SGS was provided a shapefile of 17992 features from DV. Error potentially exists in this DV generated data for the service location features in terms of their assigned physical location, phase, and parent element.Regarding the physical location of the features, SGS had no part in physically locating the 17992 features as provided by DV and cannot ascertain the accuracy of the locations of the features without undertaking an analysis designed to verify or correct for error if it exists. SGS constructed the feature class and loaded the shapefile objects into the feature class and thus the features exist in the DV derived location. SGS understands that DV situated the features based on the address as found in the CIS. No features were verified as to the accuracy of their physical location when the data were originally loaded. It is the assumption of SGS that the locations of the vast majority of the service location features as provided by DV are in fact correct.SGS understands that as a general rule that DV situated residential features (individually or grouped) in the center of a parcel. SGS understands that for areas where multiple features may exist in a given parcel (such as commercial properties and mobile home parks) that DV situated features as either grouped in the center of the parcel or situated over buildings, structures, or other features identifiable in air photos. It appears that some features are also grouped in roads or other non addressed locations, likely near areas where they should physically be located, but that these features were not located in a final manner and are either grouped or strung out in a row in the general area of where DV may have expected they should exist.Regarding the parent and phase of the features, the potential for error is due to the "first order approximation" protocol employed by DV for assigning the attributes. With the features located as detailed above, SGS understands that DV identified the transformer closest to the service location (straight line distance) as its parent. Phase was assigned to the service location feature based on the phase of the parent transformer. SGS expects that this protocol correctly assigned parent (and phase) to a significant portion of the features, however this protocol will also obviously incorretly assign parent in many instances.To accurately identify parent for all 17992 service locations would require a significant GIS and field based project. SGS is willing to undertake a project of this magnitude at the discretion of TOA. In the meantime, SGS is maintaining (editing and adding to) this feature class as part of the ongoing GIS maintenance agreement that is in place between TOA and SGS. In lieu of a project designed to quality assess and correct for the data provided by DV, SGS will verify the locations of the features at the request of TOA via comparison of the unique identifier for a service location to the CIS address and Wake County parcel data address as issues arise with the OMS if SGS is directed to focus on select areas for verification by TOA. Additionally, as SGS adds features to this feature class, if error related to the phase and parent of an adjacent feature is uncovered during a maintenance, it will be corrected for as part of that maintenance.With respect to the additon of features moving forward, TOA will provide SGS with an export of CIS records for each SGS maintenance, SGS will tie new accounts to a physical location based on address, SGS will create a feature for the CIS account record in this feature class at the center of a parcel for a residential address or at the center of a parcel or over the correct (or approximately correct) location as determined via air photos or via TOA plans for commercial or other relevant areas, SGS will identify the parent of the service location as the actual transformer that feeds the service location, and SGS will identify the phase of the service address as the phase of it's parent.Service locations with an ObjectID of 1 through 17992 were originally physically located and attributed by DV.Service locations with an ObjectID of 17993 or higher were originally physically located and attributed by SGS.DV originated data are provided the Creation User attribute of DV, however if SGS has edited or verified any aspect of the feature, this attribute will be changed to SGS and a comment related to the edits will be provided in the SGS Edits Comments data field. SGS originated features will be provided the Creation User attribute of SGS. Reference the SGS Edits Comments attribute field Metadata for further information.

  4. n

    Using GPS and GIS

    • library.ncge.org
    Updated Jul 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). Using GPS and GIS [Dataset]. https://library.ncge.org/documents/50b7245a36114c4387e4327782030633
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset authored and provided by
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: A Lisson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8Resource type: lessonSubject topic(s): gis, geographic thinkingRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:

    1. Explain the difference between two types of geospatial technologies - GPS and GIS.
    2. Develop basic skills to effectively manipulate and use GPS receivers and ArcGIS software.
    3. Explain uses of GPS and GIS.Summary: Students use GPS coordinates to discover geocaches at a local park, and they use ArcGIS to layer maps about the park. Frontenac State park is the example, but any park or area (including school grounds) could be used. Students also investigate careers that use GIS.
  5. H

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • hydroshare.org
    • dataone.org
    • +1more
    zip
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2020). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    zip(2.9 MB)Available download formats
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    HydroShare
    Authors
    Sarah Beganskas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  6. OpenStreetMap (Blueprint)

    • catalog.data.gov
    • data.baltimorecity.gov
    • +15more
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2024). OpenStreetMap (Blueprint) [Dataset]. https://catalog.data.gov/dataset/openstreetmap-blueprint-653c6
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  7. d

    GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | GIS Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-gis-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Nigeria, Kenya, Thailand, Taiwan, Egypt, Philippines, United States of America, Saudi Arabia, United Arab Emirates, Malaysia
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live includes:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  8. GIS Market Analysis North America, Europe, APAC, South America, Middle East...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Germany, UK, Canada, Brazil, Japan, France, South Korea, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-industry-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Brazil, China, Europe, United Kingdom, South Korea, Japan, Germany, United States, United Arab Emirates, Canada, Global
    Description

    Snapshot img

    GIS Market Size 2025-2029

    The GIS market size is forecast to increase by USD 24.07 billion at a CAGR of 20.3% between 2024 and 2029.

    The Global Geographic Information System (GIS) market is experiencing significant growth due to the integration of Building Information Modeling (BIM) software and GIS, enabling more accurate and efficient construction projects. The increasing adoption of GIS solutions in precision farming for soil and water management is another key trend, with farmers utilizing sensors, GPS, and satellite data to optimize fertilizer usage and crop yields. However, challenges persist, such as the lack of proper planning leading to implementation failures of GIS solutions. In the realm of smart cities, GIS plays a crucial role in managing data from various sources, including LIDAR, computer-aided design, and digital twin technologies. Additionally, public safety and insurance industries are leveraging GIS for server-based data analysis, while smartphones and antennas facilitate real-time data collection. Amidst this digital transformation, ensuring data security and privacy becomes paramount, making it a critical consideration for market participants.
    

    What will be the Size of the GIS Market During the Forecast Period?

    Request Free Sample

    The Global Geographic Information System (GIS) market encompasses a range of software solutions and hardware components used to capture, manage, analyze, and visualize geospatial data. Key industries driving market growth include transportation, smart city planning, green buildings, architecture and construction, utilities, oil and gas, agriculture, and urbanization. GIS technology plays a pivotal role in various applications such as 4D GIS software for infrastructure project management, augmented reality platforms for enhanced visualization, and LIDAR and GNSS/GPS antenna for accurate location data collection. Cloud technology is transforming the GIS landscape by enabling real-time data access and collaboration. The transportation sector is leveraging GIS for route optimization, asset management, and predictive maintenance.
    Urbanization and population growth are fueling the demand for GIS in city planning and disaster management. Additionally, GIS is increasingly being adopted in sectors like agriculture for precision farming and soil mapping, and in the construction industry for Building Information Modeling (BIM). The market is also witnessing the emergence of innovative applications in areas such as video games and natural disasters risk assessment. Mobile devices are further expanding the reach of GIS, making it accessible to a wider audience. Overall, the market is poised for significant growth, driven by the increasing need for data-driven decision-making and the integration of geospatial technology into various industries.
    

    How is this GIS Industry segmented and which is the largest segment?

    The gis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Type
    
      Telematics and navigation
      Mapping
      Surveying
      Location-based services
    
    
    Device
    
      Desktop
      Mobile
    
    
    Geography
    
      North America
    
        Canada
        US
    
    
      Europe
    
        Germany
        UK
        France
    
    
      APAC
    
        China
        Japan
        South Korea
    
    
      South America
    
        Brazil
    
    
      Middle East and Africa
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.
    

    The market encompasses desktop, mobile, cloud, and server software solutions, catering to various industries. Open-source software with limited features poses a challenge due to the prevalence of counterfeit products. Yet, the market witnesses an emerging trend toward cloud-based GIS software adoption. However, standardization and interoperability concerns hinder widespread adoption. Geospatial technology is utilized extensively in sectors such as Transportation, Utilities, Oil and Gas, Agriculture, and Urbanization, driven by population growth, urban planning, and sustainable development. Key applications include smart city planning, green buildings, BIM, 4D GIS software, augmented reality platforms, GIS collectors, LIDAR, and GNSS/GPS antennas. Cloud technology, mobile devices, and satellite imaging are critical enablers.

    Get a glance at the GIS Industry report of share of various segments Request Free Sample

    The software segment was valued at USD 5.06 billion in 2019 and showed a gradual increase during the forecast period.

    Regional Analysis

    North America is estimated to contribute 38% to the growth of the global market during the forecast period.
    

    Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during th

  9. d

    Data from: GIS database

    • search.dataone.org
    • dataverse.harvard.edu
    • +2more
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Win, Nang Tin (2023). GIS database [Dataset]. https://search.dataone.org/view/sha256%3A81f03040273bf8f7724e6225997169d7e2c088339e18a2d37130d0c62da86b6b
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Win, Nang Tin
    Time period covered
    Oct 1, 2020 - Sep 30, 2022
    Description

    It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.

  10. OpenStreetMap 3D Trees (Realistic)

    • hub.arcgis.com
    • opendata.rcmrd.org
    • +1more
    Updated Jun 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). OpenStreetMap 3D Trees (Realistic) [Dataset]. https://hub.arcgis.com/maps/33383da8a75f4d24b4b6a0d0532abe6e
    Explore at:
    Dataset updated
    Jun 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, South Pacific Ocean
    Description

    Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.

  11. FDEP BSM GPS Collections

    • maps-fdep.opendata.arcgis.com
    • geodata.dep.state.fl.us
    • +1more
    Updated Aug 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2018). FDEP BSM GPS Collections [Dataset]. https://maps-fdep.opendata.arcgis.com/datasets/FDEP::fdep-bsm-gps-collections
    Explore at:
    Dataset updated
    Aug 20, 2018
    Dataset authored and provided by
    Florida Department of Environmental Protectionhttp://www.floridadep.gov/
    Area covered
    Description

    This data set contains GPS data collected by the FDEP Bureau of Surveying and Mapping (BSM). Data was first imported from the NGS Online Positional User Service (OPUS). On 1/10/2017 the import was performed based on all OPUS submittals performed by Rudolphe Konou of FDEP BSM. The file was imported to a geodatabase. Some of the original fields were dropped from the data set and some maintenance of the other fields was performed to match BSM needs for a web application.Since inception, the file is updated via a Geoform as solutions are returned to FDEP from OPUS. Point of Contact:Bryan Shoaf, FDEP Division of State Lands850-245-2619bryan.shoaf@dep.state.fl.us

  12. Vietnam Geospatial Analytics Market Report by Component (Solution,...

    • imarcgroup.com
    pdf,excel,csv,ppt
    Updated Dec 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IMARC Group (2023). Vietnam Geospatial Analytics Market Report by Component (Solution, Services), Type (Surface and Field Analytics, Network and Location Analytics, Geovisualization, and Others), Technology (Remote Sensing, GIS, GPS, and Others), Enterprise Size (Large Enterprises, Small and Medium-sized Enterprises), Deployment Mode (On-premises, Cloud-based), Vertical (Automotive, Energy and Utilities, Government, Defense and Intelligence, Smart Cities, Insurance, Natural Resources, and Others), and Region 2024-2032 [Dataset]. https://www.imarcgroup.com/vietnam-geospatial-analytics-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 26, 2023
    Dataset provided by
    Imarc Group
    Authors
    IMARC Group
    License

    https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy

    Time period covered
    2024 - 2032
    Area covered
    Vietnam, Global
    Description

    Market Overview:

    The Vietnam geospatial analytics market size is projected to exhibit a growth rate (CAGR) of 8.90% during 2024-2032. The increasing product utilization by government authorities in various sectors, various technological advancements in satellite technology, remote sensing, and data collection methods, and the rising development of smart cities represent some of the key factors driving the market.

    Report Attribute
    Key Statistics
    Base Year
    2023
    Forecast Years
    2024-2032
    Historical Years
    2018-2023
    Market Growth Rate (2024-2032)8.90%


    Geospatial analytics is a field of data analysis that focuses on the interpretation and analysis of geographic and spatial data to gain valuable insights and make informed decisions. It combines geographical information systems (GIS), advanced data analysis techniques, and visualization tools to analyze and interpret data with a spatial or geographic component. It also enables the collection, storage, analysis, and visualization of geospatial data. It provides tools and software for managing and manipulating spatial data, allowing users to create maps, perform spatial queries, and conduct spatial analysis. In addition, geospatial analytics often involves integrating geospatial data with other types of data, such as demographic data, environmental data, or economic data. This integration helps in gaining a more comprehensive understanding of complex phenomena. Moreover, geospatial analytics has a wide range of applications. For example, it can be used in urban planning to optimize transportation routes, in agriculture to manage crop yield and soil quality, in disaster management to assess and respond to natural disasters, in wildlife conservation to track animal migrations, and in business for location-based marketing and site selection.

    Vietnam Geospatial Analytics Market Trends:

    The Vietnamese government has recognized the importance of geospatial analytics in various sectors, including urban planning, agriculture, disaster management, and environmental monitoring. Initiatives to develop and utilize geospatial data for public projects and policy-making have spurred demand for geospatial analytics solutions. In addition, Vietnam is experiencing rapid urbanization and infrastructure development. Geospatial analytics is critical for effective urban planning, transportation management, and infrastructure optimization. This trend is driving the adoption of geospatial solutions in cities and regions across the country. Besides, Vietnam's agriculture sector is a significant driver of its economy. Geospatial analytics helps farmers and agricultural businesses optimize crop management, soil health, and resource allocation. Consequently, precision farming techniques, enabled by geospatial data, are becoming increasingly popular, which is also propelling the market. Moreover, the development of smart cities in Vietnam relies on geospatial analytics for various applications, such as traffic management, public safety, and energy efficiency. Geospatial data is central to building the infrastructure needed for smart city initiatives. Furthermore, advances in satellite technology, remote sensing, and data collection methods have made geospatial data more accessible and affordable. This has lowered barriers to entry and encouraged the use of geospatial analytics in various sectors. Additionally, the telecommunications sector in Vietnam is expanding, and location-based services, such as navigation and advertising, rely on geospatial analytics. This creates opportunities for geospatial data providers and analytics solutions in the telecommunications industry.

    Vietnam Geospatial Analytics Market Segmentation:

    IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2024-2032. Our report has categorized the market based on component, type, technology, enterprise size, deployment mode, and vertical.

    Component Insights:

    Vietnam Geospatial Analytics Market Reporthttps://www.imarcgroup.com/CKEditor/2e6fe72c-0238-4598-8c62-c08c0e72a138other-regions1.webp" style="height:450px; width:800px" />

    • Solution
    • Services

    The report has provided a detailed breakup and analysis of the market based on the component. This includes solution and services.

    Type Insights:

    • Surface and Field Analytics
    • Network and Location Analytics
    • Geovisualization
    • Others

    A detailed breakup and analysis of the market based on the type have also been provided in the report. This includes surface and field analytics, network and location analytics, geovisualization, and others.

    Technology Insights:

    • Remote Sensing
    • GIS
    • GPS
    • Others

    The report has provided a detailed breakup and analysis of the market based on the technology. This includes remote sensing, GIS, GPS, and others.

    Enterprise Size Insights:

    • Large Enterprises
    • Small and Medium-sized Enterprises

    A detailed breakup and analysis of the market based on the enterprise size have also been provided in the report. This includes large enterprises and small and medium-sized enterprises.

    Deployment Mode Insights:

    • On-premises
    • Cloud-based

    The report has provided a detailed breakup and analysis of the market based on the deployment mode. This includes on-premises and cloud-based.

    Vertical Insights:

    • Automotive
    • Energy and Utilities
    • Government
    • Defense and Intelligence
    • Smart Cities
    • Insurance
    • Natural Resources
    • Others

    A detailed breakup and analysis of the market based on the vertical have also been provided in the report. This includes automotive, energy and utilities, government, defense and intelligence, smart cities, insurance, natural resources, and others.

    Regional Insights:

    Vietnam Geospatial Analytics Market Reporthttps://www.imarcgroup.com/CKEditor/bbfb54c8-5798-401f-ae74-02c90e137388other-regions6.webp" style="height:450px; width:800px" />

    • Northern Vietnam
    • Central Vietnam
    • Southern Vietnam

    The report has also provided a comprehensive analysis of all the major regional markets, which include Northern Vietnam, Central Vietnam, and Southern Vietnam.

    Competitive Landscape:

    The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.

    Vietnam Geospatial Analytics Market Report Coverage:

    <td

    Report FeaturesDetails
    Base Year of the Analysis2023
    Historical Period
  13. Medical Emergency Response Structures

    • resilience.climate.gov
    • prep-response-portal.napsgfoundation.org
    • +5more
    Updated Jun 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). Medical Emergency Response Structures [Dataset]. https://resilience.climate.gov/maps/2c36dbb008844081b017da6fd3d0d28b
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Medical Emergency Response StructuresThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Geological Survey, displays hospitals, medical centers, ambulance services, fire stations and EMS stations in the U.S. Per the USGS, "Structures data are designed to be used in general mapping and in the analysis of structure related activities using geographic information system technology. The National Map structures data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and transportation, to produce general reference base maps. The types of structures collected are largely determined by the needs of disaster planning and emergency response, and homeland security organizations."Greendale Fire DepartmentData currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Medical & Emergency Response) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 135 (USGS National Structures Dataset - USGS National Map Downloadable Data Collection)OGC API Features Link: (Medical Emergency Response Structures - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: The National MapFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Theme CommunityThis data set is part of the NGDA Real Property Theme Community. Per the Federal Geospatial Data Committee (FGDC), Real Property is defined as "the spatial representation (location) of real property entities, typically consisting of one or more of the following: unimproved land, a building, a structure, site improvements and the underlying land. Complex real property entities (that is "facilities") are used for a broad spectrum of functions or missions. This theme focuses on spatial representation of real property assets only and does not seek to describe special purpose functions of real property such as those found in the Cultural Resources, Transportation, or Utilities themes."For other NGDA Content: Esri Federal Datasets

  14. OpenStreetMap 3D Trees (Thematic)

    • cacgeoportal.com
    • onemap-esri.hub.arcgis.com
    • +1more
    Updated Jun 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). OpenStreetMap 3D Trees (Thematic) [Dataset]. https://www.cacgeoportal.com/maps/f75fef56b2d944fe92ef9f7737b4f953
    Explore at:
    Dataset updated
    Jun 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, South Pacific Ocean
    Description

    Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.

  15. Chemical, physical, profile and laboratory analysis oceanographic data...

    • search.dataone.org
    • catalog.data.gov
    • +1more
    Updated Mar 24, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA NCEI Environmental Data Archive (2016). Chemical, physical, profile and laboratory analysis oceanographic data collected aboard the Brooks McCall in the Gulf of Mexico from 2010-05-30 to 2010-06-02 in response to the Deepwater Horizon Oil Spill event (NODC Accession 0069046) [Dataset]. https://search.dataone.org/view/%7B121B4840-2319-4A8E-B69D-3CE592C075D2%7D
    Explore at:
    Dataset updated
    Mar 24, 2016
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Time period covered
    May 30, 2010 - Jun 2, 2010
    Area covered
    Description

    Chemical, physical, profile and laboratory analysis oceanographic data were collected aboard the Brooks McCall in the Gulf of Mexico from 2010-05-30 to 2010-06-02 in response to the Deepwater Horizon Oil Spill event on April 20, 2010, by the Subsurface Monitoring Unit (SMU), which consisted of multiple government and corporate agencies. These data include Attenuation/Transmission, CDOM fluorescence, Total Petroleum Hydrocarbons (TPH), Volatile Organic Compounds, conductivity, dissolved oxygen, hydrostatic pressure, salinity, sound velocity, suspended solids, temperature and water density. The instruments used to collect these data included CTD, Laser In-Situ Scattering and Transmissometer (LISST), Transmissometer, bottle, fluorometer and oxygen meter along with other physical sampling devices. More specific information about each data set is located in their individual metadata records. This data set also contains products created for use in real time analysis and decision support. These products may include charts, graphs, maps, plots, and GIS formatted data files. The CTD data underwent preliminary quality assurance and control procedures at the National Coastal Data Development Center (NCDDC). The analytical chemistry data are provisional and provide results of onshore laboratory analysis of water and sediment samples. Cruise level information consisting of data management documents, cruise reports and plans, videos and pictures, and other miscellaneous documentation were gathered by the data managers. (NODC Accession 0069046)

  16. BOOK: Learning from COVID-19: GIS for Pandemics

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    • +1more
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2022). BOOK: Learning from COVID-19: GIS for Pandemics [Dataset]. https://coronavirus-resources.esri.com/documents/78dcf5a3860a4cdea5482dac94f9c6b6
    Explore at:
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Needing to answer the question of “where” sat at the forefront of everyone’s mind, and using a geographic information system (GIS) for real-time surveillance transformed possibly overwhelming data into location intelligence that provided agencies and civic leaders with valuable insights.This book highlights best practices, key GIS capabilities, and lessons learned during the COVID-19 response that can help communities prepare for the next crisis.GIS has empowered:Organizations to use human mobility data to estimate the adherence to social distancing guidelinesCommunities to monitor their health care systems’ capacity through spatially enabled surge toolsGovernments to use location-allocation methods to site new resources (i.e., testing sites and augmented care sites) in ways that account for at-risk and vulnerable populationsCommunities to use maps and spatial analysis to review case trends at local levels to support reopening of economiesOrganizations to think spatially as they consider “back-to-the-workplace” plans that account for physical distancing and employee safety needsLearning from COVID-19 also includes a “next steps” section that provides ideas, strategies, tools, and actions to help jump-start your own use of GIS, either as a citizen scientist or a health professional. A collection of online resources, including additional stories, videos, new ideas and concepts, and downloadable tools and content, complements this book.Now is the time to use science and data to make informed decisions for our future, and this book shows us how we can do it.Dr. Este GeraghtyDr. Este Geraghty is the chief medical officer and health solutions director at Esri where she leads business development for the Health and Human Services sector.Matt ArtzMatt Artz is a content strategist for Esri Press. He brings a wide breadth of experience in environmental science, technology, and marketing.

  17. c

    i06 Bathy NCRO 20170620 FeatherRiver

    • gis.data.cnra.ca.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jan 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    gis_admin@water.ca.gov_DWR (2022). i06 Bathy NCRO 20170620 FeatherRiver [Dataset]. https://gis.data.cnra.ca.gov/datasets/cfd90aa3216d4cc9b384e2ebc3261125
    Explore at:
    Dataset updated
    Jan 14, 2022
    Dataset authored and provided by
    gis_admin@water.ca.gov_DWR
    Area covered
    Description

    The California Department of Water Resources (CA-DWR), North Central Region Office (NCRO), Bathymetry and Technical Support Section, conducted a bathymetric survey of the Feather River at the request of the DWR Flood Operations Center (FOC) and the DWR Division of Engineering (DOE). The main purpose of the data collection effort was to provide supporting data for hydrologic modeling of the river. The survey took place between June 9th and August 7th, 2017 using single beam echo sounder technology. The original survey data were positionally corrected using Post Processed Kinematic (PPK) GPS. The original field survey data were collected in NAD83 (California State Plane Zone II coordinate system) and NAVD88 datums. This dataset contains the June 2017 portion of the study. • Horizontal Units: US Foot• Vertical Units: US Foot

  18. Whitney Point Adelie Penguin Colonies, Vector GIS Layer

    • data.aad.gov.au
    • cloud.csiss.gmu.edu
    • +4more
    Updated Feb 9, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WOEHLER, ERIC (2017). Whitney Point Adelie Penguin Colonies, Vector GIS Layer [Dataset]. https://data.aad.gov.au/metadata/ASAC_1219_AAT_WP_ADPE_Colonies
    Explore at:
    Dataset updated
    Feb 9, 2017
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    Australian Antarctic Data Centre
    Authors
    WOEHLER, ERIC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 10, 2006 - Feb 24, 2006
    Area covered
    Description

    An ArcGIS shapefile layer showing the extent of all extant and relic Adelie penguin (Pygoscelis adeliae) colonies at Whitney Point, Windmill Islands, February 2006. The field 'Status' describes each polygon as extant, relic or maximum. Extant refers to the area used by breeding birds in the summer 2005/06. Maximum refers to the historic maximal extent of the colony. Relic refers to any colony which was not occupied by any breeding pairs during 2005/06.

    Positional accuracy is approx. 1-2 m, after accounting for dGPS errors and errors in identification of the boundaries of colonies. Mapping was conducted after the end of the breeding season, so boundaries were identified as the extent of nest pebbles/fresh faeces, and it was considered that they could be reliably identified to within 0.5m.

    Data were acquired using a Trimble Pro XH differential GPS. This work was completed as part of ASAC project 1219 (ASAC_1219).

    Also for this project, three aerial photographs of Whitney point showing the adelie penguin colonies and taken on 17 December 1990 were georeferenced. These aerial photographs are film ANTC1219 run 54 frames 21 to 23.

    Work on this project also utilised a Digital Elevation Model (DEM) created for Shirley Island. See the metadata record, 'A digital elevation model (DEM) and orthophoto of the Whitney Point area of the Windmill Islands, Antarctica' for more information (linked below).

    Since the 2005/06 summer was a low-ice year the opportunity was also taken to survey with differential GPS a section of coastline about 230 metres long east of Whitney Point on Clark Peninsula. This section of coastline was ice free and accessible. The data was collected with differential GPS on 10 February 2006.

  19. c

    City Owned Trees

    • data.ccrpc.org
    • gis-cityofchampaign.opendata.arcgis.com
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Champaign (2023). City Owned Trees [Dataset]. https://data.ccrpc.org/dataset/city-owned-trees5
    Explore at:
    csv, geojson, zip, html, arcgis geoservices rest api, kmlAvailable download formats
    Dataset updated
    Jul 7, 2023
    Dataset provided by
    City of Champaign
    Description

    This layer is maintained by the public works department. It is an inventory of tree sites originally performed by the Davey Tree Company in 2011. Updates have been applied by the GIS Technician in the Public Works Department. Additions and changes are determined by Forestry Staff based on GPS data collection, maps, site visits, and staff knowledge.

  20. Elk Home Range - Sams Neck - 2021-2023 [ds3170]

    • data.ca.gov
    • data.cnra.ca.gov
    • +7more
    Updated Apr 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2024). Elk Home Range - Sams Neck - 2021-2023 [ds3170] [Dataset]. https://data.ca.gov/dataset/elk-home-range-sams-neck-2021-2023-ds3170
    Explore at:
    csv, kml, geojson, arcgis geoservices rest api, zip, htmlAvailable download formats
    Dataset updated
    Apr 18, 2024
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The project lead for the collection of this data was Erin Zulliger. Elk (3 adult females) were captured and equipped with GPS collars (Litetrack/Pinpoint Iridium collars, Lotek Wireless Inc., Newmarket, Ontario, Canada or Vectronic Aerospace) transmitting data from 2021-2023. The Sam’s Neck herd does not migrate between traditional summer and winter seasonal ranges. Therefore, annual home ranges were modeled using year-round data to demarcate high use areas in lieu of modeling the specific winter ranges commonly seen in other ungulate analyses in California. GPS locations were fixed at 6-hour intervals in the dataset. To improve the quality of the data set, the GPS data locations fixed in 2D space and visually assessed as a bad fix by the analyst were removed.

    The methodology used for this migration analysis allowed for the mapping of the herd's annual range. Brownian bridge movement models (BBMMs; Sawyer et al. 2009) were constructed with GPS collar data from 3 elk, including 6 annual home range sequences, location, date, time, and average location error as inputs in Migration Mapper. BBMMs were produced at a spatial resolution of 50 m using a sequential fix interval of less than 27 hours. Home range is visualized as the 50th percentile contour (high use) and the 99th percentile contour of the year-round utilization distribution. Annual home range designations for this herd may expand with a larger sample.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri K12 GIS Organization (2021). Configuring Esri Collector for High-Accuracy Data Collection [Dataset]. https://storymaps-k12.hub.arcgis.com/documents/87aa0376199346e4b956cb29ff9c1a5f
Organization logo

Configuring Esri Collector for High-Accuracy Data Collection

Explore at:
Dataset updated
Aug 6, 2021
Dataset provided by
Esrihttp://esri.com/
Authors
Esri K12 GIS Organization
Description

Summary: How to configure Esri Collector for ArcGIS with a Bad Elf GPS Receiver for High-Accuracy Field Data Collection Storymap metadata page: URL forthcoming Possible K-12 Next Generation Science standards addressed:Grade level(s) 1: Standard 1-LS3-1 - Heredity: Inheritance and Variation of Traits - Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parentsGrade level(s) 4: Standard 4-ESS2-2 - Earth’s Systems - Analyze and interpret data from maps to describe patterns of Earth’s featuresGrade level(s) 5: Standard 5-ESS1-2 - Earth’s Place in the Universe - Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night skyGrade level(s) 6-8: Standard MS-LS4-5 - Biological Evolution: Unity and Diversity - Gather and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms.Grade level(s) 6-8: Standard MS-LS4-6 - Biological Evolution: Unity and Diversity - Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over timeGrade level(s) 6-8: Standard MS-ESS1-3 - Earth’s Place in the Universe - Analyze and interpret data to determine scale properties of objects in the solar systemGrade level(s) 6-8: Standard MS-ESS2-2 - Earth’s Systems - Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scalesGrade level(s) 9-12: Standard HS-LS4-4 - Biological Evolution: Unity and Diversity - Construct an explanation based on evidence for how natural selection leads to adaptation of populationsGrade level(s) 9-12: Standard HS-ESS2-1 - Earth’s Systems - Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.Most frequently used words:featurebadelfselectgpsApproximate Flesch-Kincaid reading grade level: 9.9. The FK reading grade level should be considered carefully against the grade level(s) in the NGSS content standards above.

Search
Clear search
Close search
Google apps
Main menu