100+ datasets found
  1. M

    DNRGPS

    • gisdata.mn.gov
    • data.wu.ac.at
    windows_app
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2022). DNRGPS [Dataset]. https://gisdata.mn.gov/dataset/dnrgps
    Explore at:
    windows_appAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset provided by
    Natural Resources Department
    Description

    DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.

    DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.

    DNRGPS does not require installation. Simply run the application .exe

    See the DNRGPS application documentation for more details.

    Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs

    Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.

    Prerequisite: .NET 4 Framework

    DNR Data and Software License Agreement

    Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.

  2. D

    Gis Data Collector Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Gis Data Collector Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/gis-data-collector-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    GIS Data Collector Market Outlook



    The global GIS Data Collector market size is anticipated to grow from USD 4.5 billion in 2023 to approximately USD 12.3 billion by 2032, at a compound annual growth rate (CAGR) of 11.6%. The growth of this market is largely driven by the increasing adoption of GIS technology across various industries, advances in technology, and the need for effective spatial data management.



    An important factor contributing to the growth of the GIS Data Collector market is the rising demand for geospatial information across different sectors such as agriculture, construction, and transportation. The integration of advanced technologies like IoT and AI with GIS systems enables the collection and analysis of real-time data, which is crucial for effective decision-making. The increasing awareness about the benefits of GIS technology and the growing need for efficient land management are also fuelling market growth.



    The government sector plays a significant role in the expansion of the GIS Data Collector market. Governments worldwide are investing heavily in GIS technology for urban planning, disaster management, and environmental monitoring. These investments are driven by the need for accurate and timely spatial data to address critical issues such as climate change, urbanization, and resource management. Moreover, regulatory policies mandating the use of GIS technology for infrastructure development and environmental conservation are further propelling market growth.



    Another major growth factor in the GIS Data Collector market is the continuous technological advancements in GIS software and hardware. The development of user-friendly and cost-effective GIS solutions has made it easier for organizations to adopt and integrate GIS technology into their operations. Additionally, the proliferation of mobile GIS applications has enabled field data collection in remote areas, thus expanding the scope of GIS technology. The advent of cloud computing has further revolutionized the GIS market by offering scalable and flexible solutions for spatial data management.



    Regionally, North America holds the largest share of the GIS Data Collector market, driven by the presence of key market players, advanced technological infrastructure, and high adoption rates of GIS technology across various industries. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, primarily due to rapid urbanization, government initiatives promoting GIS adoption, and increasing investments in smart city projects. Other regions such as Europe, Latin America, and the Middle East & Africa are also experiencing significant growth in the GIS Data Collector market, thanks to increasing awareness and adoption of GIS technology.



    The role of a GPS Field Controller is becoming increasingly pivotal in the GIS Data Collector market. These devices are essential for ensuring that data collected in the field is accurate and reliable. By providing real-time positioning data, GPS Field Controllers enable precise mapping and spatial analysis, which are critical for applications such as urban planning, agriculture, and transportation. The integration of GPS technology with GIS systems allows for seamless data synchronization and enhances the efficiency of data collection processes. As the demand for real-time spatial data continues to grow, the importance of GPS Field Controllers in the GIS ecosystem is expected to rise, driving further innovations and advancements in this segment.



    Component Analysis



    The GIS Data Collector market is segmented by component into hardware, software, and services. Each of these components plays a crucial role in the overall functionality and effectiveness of GIS systems. The hardware segment includes devices such as GPS units, laser rangefinders, and mobile GIS devices used for field data collection. The software segment encompasses various GIS applications and platforms used for data analysis, mapping, and visualization. The services segment includes consulting, training, maintenance, and support services provided by GIS vendors and solution providers.



    In the hardware segment, the demand for advanced GPS units and mobile GIS devices is increasing, driven by the need for accurate and real-time spatial data collection. These devices are equipped with high-precision sensors and advanced features such as real-time kinematic (RTK) positioning, which enhance

  3. Using GPS and GIS

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). Using GPS and GIS [Dataset]. https://library.ncge.org/documents/NCGE::using-gps-and-gis--1/about
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: A Lisson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8Resource type: lessonSubject topic(s): gis, geographic thinkingRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:

    1. Explain the difference between two types of geospatial technologies - GPS and GIS.
    2. Develop basic skills to effectively manipulate and use GPS receivers and ArcGIS software.
    3. Explain uses of GPS and GIS.Summary: Students use GPS coordinates to discover geocaches at a local park, and they use ArcGIS to layer maps about the park. Frontenac State park is the example, but any park or area (including school grounds) could be used. Students also investigate careers that use GIS.
  4. H

    Handheld GNSS Receiver Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Handheld GNSS Receiver Report [Dataset]. https://www.datainsightsmarket.com/reports/handheld-gnss-receiver-31211
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global handheld GNSS receiver market is experiencing robust growth, driven by increasing demand across diverse sectors. Applications like precision agriculture, surveying (GIS), and construction are major contributors, with the rising adoption of advanced technologies like RTK (Real-Time Kinematic) positioning enhancing accuracy and efficiency. The aviation and electric power industries are also significant users, relying on these receivers for precise navigation and infrastructure monitoring. The market is segmented by the number of channels (≤1000 and >1000), with higher channel receivers catering to more demanding applications requiring simultaneous tracking of multiple GNSS constellations for improved reliability and coverage. Market expansion is further fueled by technological advancements, including improved signal processing, miniaturization, and integration with other technologies like IoT devices. While initial investment costs can be a barrier, the long-term benefits of increased productivity and reduced operational errors are driving adoption. The market is highly competitive, with numerous established players and emerging companies offering a range of solutions. Geographic distribution sees strong growth in North America and Asia Pacific, reflecting the high concentration of technologically advanced industries and infrastructure projects in these regions. Future growth is projected to be influenced by the expanding adoption of GNSS technology in emerging economies, the development of more user-friendly interfaces, and the integration of handheld receivers into broader solutions. Looking ahead, the market is poised for continued expansion, fueled by several factors. The increasing adoption of precision technologies in agriculture promises significant growth, as farmers increasingly demand improved yield and resource management. The expansion of infrastructure projects globally, particularly in developing nations, will require robust and accurate positioning solutions. Furthermore, the ongoing development and integration of advanced features like improved multi-constellation compatibility, better accuracy, and enhanced data processing capabilities will continue to drive demand. Competition among manufacturers will remain intense, pushing innovation and driving down costs, making handheld GNSS receivers increasingly accessible across a wider range of applications. The market is expected to witness sustained growth in the coming years, with regional variations dependent on factors such as economic development, infrastructure investment, and government regulations.

  5. G

    GIS Data Collector Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Data Collector Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-data-collector-21401
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 22, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS data collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising demand for accurate geospatial data across various industries. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $4.2 billion by 2033. Key drivers include the increasing availability of affordable and high-precision GPS technology, coupled with advancements in data processing and cloud-based solutions. The integration of GIS data collectors with other technologies, such as drones and IoT sensors, is further fueling market expansion. The demand for high-precision GIS data collectors is particularly strong in sectors like surveying, mapping, and construction, where accuracy is paramount. While the market faces challenges such as high initial investment costs and the need for specialized expertise, the overall growth trajectory remains positive. The market is segmented by application (agriculture, industrial, forestry, and others) and by type (general precision and high precision). North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to experience rapid growth in the coming years due to substantial infrastructure development and increasing government investments in geospatial technologies. The competitive landscape is characterized by both established players like Trimble, Garmin, and Hexagon (Leica Geosystems) and emerging companies offering innovative solutions. These companies are constantly innovating, integrating advanced technologies like AI and machine learning to enhance data collection and analysis capabilities. This competition is driving down prices and improving product quality, benefiting end-users. The increasing use of mobile GIS and cloud-based data management solutions is also transforming the industry, making data collection and analysis more accessible and efficient. Future growth will be largely influenced by the advancement of 5G networks, enabling faster data transmission and real-time applications, and the increasing adoption of automation and AI in data processing workflows. Furthermore, government regulations promoting the use of accurate geospatial data for sustainable development and environmental monitoring are creating new opportunities for the market’s expansion.

  6. a

    GPS Roads Maya Forest GIS

    • spatialdiscovery-ucsb.opendata.arcgis.com
    • library-ucsb.opendata.arcgis.com
    • +1more
    Updated Jan 1, 2000
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of California, Santa Barbara (2000). GPS Roads Maya Forest GIS [Dataset]. https://spatialdiscovery-ucsb.opendata.arcgis.com/datasets/gps-roads-maya-forest-gis-1
    Explore at:
    Dataset updated
    Jan 1, 2000
    Dataset authored and provided by
    University of California, Santa Barbara
    Area covered
    Description

    In the 2000 field season of the BRASS/El Pilar Program, the UCSB Maya Forest GIS collected and processed GPS data for drivable roads in parts of Western Belize and the Peten of Guatemala. Selected for the work were Garmin GPS units accurate from 3-10m (after the US government released Selective Availability SA of error).

  7. D

    Geographic Information System GIS Tools Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Geographic Information System GIS Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-gis-tools-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System (GIS) Tools Market Outlook



    The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.



    One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.



    Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.



    The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.



    Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.



    Component Analysis



    The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.



    Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.



    The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr

  8. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  9. GIS data

    • figshare.com
    txt
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Thomas (2016). GIS data [Dataset]. http://doi.org/10.6084/m9.figshare.1101470.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Andrew Thomas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Geo-referenced datasets.

  10. d

    Data from: GIS database

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Win, Nang Tin (2023). GIS database [Dataset]. http://doi.org/10.7910/DVN/TV7J27
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Win, Nang Tin
    Time period covered
    Oct 1, 2020 - Sep 30, 2022
    Description

    It is about updating to GIS information database, Decision Support Tool (DST) in collaboration with IWMI. With the support of the Fish for Livelihoods field team and IPs (MFF, BRAC Myanmar, PACT Myanmar, and KMSS) staff, collection of Global Positioning System GPS location data for year-1 (2019-20) 1,167 SSA farmer ponds, and year-2 (2020-21) 1,485 SSA farmer ponds were completed with different GPS mobile applications: My GPS Coordinates, GPS Status & Toolbox, GPS Essentials, Smart GPS Coordinates Locator and GPS Coordinates. The Soil and Water Assessment Tool (SWAT) model that integrates climate change analysis with water availability will provide an important tool informing decisions on scaling pond adoption. It can also contribute to a Decision Support Tool to better target pond scaling. GIS Data also contribute to identify the location point of the F4L SSA farmers ponds on the Myanmar Map by fiscal year from 1 to 5.

  11. a

    Utah TURN GPS BaseLines

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • opendata.gis.utah.gov
    Updated Jun 2, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2015). Utah TURN GPS BaseLines [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/af0cf475021844d99ac2f728bfd0ec33
    Explore at:
    Dataset updated
    Jun 2, 2015
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This data represents the measured distance between the The Utah Reference Network Global Positioning System (TURN GPS) base stations. It models the current coverage of the network and in some areas extends past the boundary of Utah. Baselines with a distance greater than 70 km will start to decrease your precision.

  12. G

    GIS Collectors Report

    • promarketreports.com
    doc, pdf, ppt
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). GIS Collectors Report [Dataset]. https://www.promarketreports.com/reports/gis-collectors-219571
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for GIS Collectors is experiencing robust growth, driven by increasing adoption of location-based services across various sectors. The market, estimated at $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This growth is fueled by several key factors, including the rising need for precise geospatial data in urban planning, infrastructure development, environmental monitoring, and precision agriculture. Advancements in data acquisition technologies, such as improved GPS accuracy and the integration of sensors like LiDAR and hyperspectral imaging, are further boosting market expansion. The increasing availability of affordable and user-friendly GIS software and cloud-based solutions is also contributing to wider adoption across diverse user groups, from professional surveyors to citizen scientists. The competitive landscape is characterized by a mix of established players and emerging technology providers. Major companies like Hexagon, Trimble Geospatial, ESRI, Topcon, and Handheld are leveraging their existing market presence and technological expertise to expand their product portfolios and cater to evolving customer needs. Meanwhile, companies from regions like China, such as Wuhan South, are emerging as significant players, particularly in the provision of cost-effective solutions. While the market faces some restraints, such as the initial investment costs associated with GIS technology and the need for skilled professionals, the overall growth trajectory remains strongly positive, indicating considerable potential for continued market expansion throughout the forecast period. The increasing focus on data security and privacy regulations will also influence market trends, particularly regarding data storage and transmission. This comprehensive report provides an in-depth analysis of the global GIS Collectors market, projected to reach $5 billion by 2028. It delves into market concentration, key trends, dominant regions, product insights, and future growth catalysts, offering valuable insights for stakeholders across the geospatial technology sector. The report utilizes rigorous data analysis and industry expertise to provide actionable intelligence for informed decision-making.

  13. K

    Geo-referenced Annual Crop Yields - Processed

    • lter.kbs.msu.edu
    Updated Mar 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Phil Robertson; Sven Bohm; Nick Haddad (2024). Geo-referenced Annual Crop Yields - Processed [Dataset]. https://lter.kbs.msu.edu/datatables/185
    Explore at:
    Dataset updated
    Mar 18, 2024
    Dataset provided by
    Michigan State University
    Authors
    Phil Robertson; Sven Bohm; Nick Haddad
    License

    https://lter.kbs.msu.edu/data/terms-of-use/https://lter.kbs.msu.edu/data/terms-of-use/

    Variables measured
    year, yield, species, latitude, moisture, longitude
    Description

    Annual crop harvest yields of corn, soy and wheat from the Main Cropping System Experiment at...

  14. v

    India Location-based Services Market By Technology (GPS, Assisted GPS), By...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research (2025). India Location-based Services Market By Technology (GPS, Assisted GPS), By Application (GIS and Mapping, Navigation and Tracking), By Location Type (Outdoor, Indoor), By End-User (Transportation & Logistics, Manufacturing), And Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/india-locationbased-services-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Verified Market Research
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    India, Asia Pacific
    Description

    India Location-based Services Market size was valued at USD 460 Million in 2024 and is projected to reach USD 1563 Million by 2032, growing at a CAGR of 16.7% from 2026 to 2032.India Location-based Services Market: Definition/ OverviewLocation-based services (LBS) are applications or services that use a user's geographic location to provide personalized content, services, or information. These services typically rely on technologies such as GPS, Wi-Fi, or cellular data to determine the user's position and tailor experiences based on that location. LBS can be offered through mobile apps, websites, or IoT devices, providing users with relevant information or guidance wherever they are.The application of location-based services spans across various industries, from navigation and travel to retail and marketing. For instance, apps like Google Maps or Uber use LBS to offer real-time route guidance, ride-hailing services, and traffic updates. Retailers use LBS for targeted advertising, sending promotional offers to customers when they are near a store. Additionally, LBS are used in healthcare for monitoring patient movement, in logistics for fleet management, and even in social networking apps where users can share their locations with friends.

  15. Windmill Islands GIS data update from various sources

    • data.aad.gov.au
    • researchdata.edu.au
    Updated Mar 29, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HARRIS, URSULA (2010). Windmill Islands GIS data update from various sources [Dataset]. https://data.aad.gov.au/metadata/gis164
    Explore at:
    Dataset updated
    Mar 29, 2010
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    Australian Antarctic Data Centre
    Authors
    HARRIS, URSULA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 1997 - Mar 1, 2010
    Area covered
    Description

    The Australian Antarctic Data Centre's topographic GIS data for the Windmill Islands, Antarctica were originally mapped mainly from aerial photography: refer to the metadata record 'Windmill Islands 1:50000 Topographic GIS Dataset'. Since then features from various sources have been added to this data.

    The data are available for download as part of the Windmill Islands GIS dataset from a Related URL.

    The data are formatted according to the SCAR Feature Catalogue (see Related URL). Data that are part of this dataset have Dataset_id = 164 in the SCAR Feature Catalogue format.

  16. N

    NMFWRI GIS/Mapping

    • catalog.newmexicowaterdata.org
    html
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Forest and Watershed Restoration Institute (2025). NMFWRI GIS/Mapping [Dataset]. https://catalog.newmexicowaterdata.org/dataset/nmfwri-gis-mapping
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    New Mexico Forest and Watershed Restoration Institute
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    NMFWRI represents the state’s only dedicated capability for supporting the spatial data analysis needs of external stakeholders in the natural resources sector, as well as the GIS/GPS capacity for Highlands University and for most of northern New Mexico. NMFWRI’s GIS work also provides help with maps and other geographic information to New Mexico groups engaged in forest restoration and land management, but who are too small to maintain their own GIS capability. These groups include soil and water conservation districts, municipalities, private groups and individuals, and tribal organizations.

  17. f

    GPS litter surveys

    • figshare.com
    txt
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Thomas (2016). GPS litter surveys [Dataset]. http://doi.org/10.6084/m9.figshare.1033781.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Authors
    Andrew Thomas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Litter surveys using GPS.

  18. u

    Utah TURN GPS Stations

    • opendata.gis.utah.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jun 2, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2015). Utah TURN GPS Stations [Dataset]. https://opendata.gis.utah.gov/datasets/utah-turn-gps-stations/api
    Explore at:
    Dataset updated
    Jun 2, 2015
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This data represents The Utah Reference Network Global Positioning System (TURN GPS) base station locations. It models the current base station locations on the network. In some areas we extends past the boundary of Utah when we have been invited by those communities.

  19. L

    Location Analytics Tools Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Location Analytics Tools Market Report [Dataset]. https://www.marketreportanalytics.com/reports/location-analytics-tools-market-11456
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Location Analytics Tools market is experiencing robust growth, projected to reach $15 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 16.93% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing adoption of location-based services across diverse sectors like transportation, retail, BFSI (Banking, Financial Services, and Insurance), media and entertainment, and telecommunications is a significant factor. Businesses are leveraging location data to optimize operations, personalize customer experiences, and gain a competitive edge. Furthermore, advancements in technologies such as GPS, GIS (Geographic Information System), and big data analytics are enabling more sophisticated location intelligence solutions. The market is segmented by end-user and type of location (outdoor and indoor), reflecting the diverse applications of these tools. North America currently holds a significant market share due to early adoption and the presence of major technology companies, but the Asia-Pacific region is expected to witness substantial growth in the coming years driven by increasing digitalization and infrastructure development. Competitive dynamics are shaped by a mix of established players like Google (Alphabet Inc.), Microsoft, and IBM, and innovative startups offering specialized solutions. These companies are employing various competitive strategies, including mergers and acquisitions, partnerships, and product innovation, to secure market share and cater to the evolving needs of businesses. The market faces certain restraints, such as data privacy concerns and the complexity involved in integrating location analytics into existing systems. However, the overall growth trajectory remains positive, indicating significant opportunities for market participants. The forecast period (2025-2033) anticipates continued expansion, driven by rising demand for real-time location intelligence and the increasing availability of high-quality location data. The transportation sector, for instance, benefits from route optimization and fleet management capabilities offered by these tools, while retailers utilize them for targeted advertising and store location analysis. The BFSI sector uses location analytics for risk management and fraud detection, highlighting the versatility of this market. The growing integration of location analytics with other emerging technologies like IoT (Internet of Things) and AI (Artificial Intelligence) further enhances its capabilities, promising even more innovative applications in the future. This convergence is expected to further accelerate market growth and drive innovation in location-based services, solidifying the long-term prospects of this dynamic market.

  20. S

    Spatial Location Services Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Spatial Location Services Report [Dataset]. https://www.marketreportanalytics.com/reports/spatial-location-services-73816
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global spatial location services market is experiencing robust growth, driven by increasing demand for precise location intelligence across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. Firstly, the proliferation of smart devices and the Internet of Things (IoT) is generating massive location data, which fuels the need for sophisticated spatial analysis and location-based services. Secondly, advancements in technologies like GPS, GIS, and machine learning are enhancing the accuracy and capabilities of location services, enabling innovative applications in various industries. Thirdly, the growing adoption of location-based marketing and advertising strategies is creating lucrative opportunities for businesses to engage with customers more effectively. Finally, government initiatives focusing on infrastructure development and smart city projects are further propelling market growth. The market is segmented by application (commercial, municipal, military, others) and type (indoor, outdoor positioning). Commercial applications currently dominate, but the municipal and military segments are expected to witness significant growth in the coming years due to increasing investments in smart city infrastructure and defense modernization programs. The competitive landscape is characterized by a mix of established technology providers, GIS specialists, and consulting firms. Major players like Google Cloud, Oracle, IBM, and HERE Technologies are leveraging their extensive data resources and technological expertise to gain a strong foothold. However, smaller, specialized firms are also thriving by offering niche solutions and innovative applications. Regional variations exist, with North America and Europe currently dominating the market due to higher technology adoption rates and well-established infrastructure. However, the Asia-Pacific region is poised for rapid expansion, driven by increasing smartphone penetration and government support for digitalization initiatives. The market faces challenges such as data privacy concerns, cybersecurity risks, and the need for seamless integration of diverse location data sources. Nevertheless, the overall outlook remains highly positive, indicating substantial growth potential for spatial location services in the years to come.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Natural Resources Department (2022). DNRGPS [Dataset]. https://gisdata.mn.gov/dataset/dnrgps

DNRGPS

Explore at:
116 scholarly articles cite this dataset (View in Google Scholar)
windows_appAvailable download formats
Dataset updated
Sep 7, 2022
Dataset provided by
Natural Resources Department
Description

DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.

DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.

DNRGPS does not require installation. Simply run the application .exe

See the DNRGPS application documentation for more details.

Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs

Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.

Prerequisite: .NET 4 Framework

DNR Data and Software License Agreement

Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.

Search
Clear search
Close search
Google apps
Main menu