Count of high school graduates for each public school in Alaska. Data covers the School Year 2013 to the present. Each year's count includes students graduating at any point during the school year (July 1 to June 30).Source: Alaska Department of Education & Early Development
This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.
Explore the progression of average salaries for graduates in Civil Engineering; Gis Graduate Program from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Civil Engineering; Gis Graduate Program relative to other fields. This data is essential for students assessing the return on investment of their education in Civil Engineering; Gis Graduate Program, providing a clear picture of financial prospects post-graduation.
This web map shows the Number of Graduates (Headcount) of UGC-funded Programmes by University, Level of Study, Mode of Study and Academic Programme Category. It is a set of the data made available by the University Grants Committee Secretariat under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk.
For the original data source: https://data.census.gov/table/ACSDP5Y2023.DP02. Layer published for the Equity Explorer, a web experience developed by the LA County CEO Anti-Racism, Diversity, and Inclusion (ARDI) initiative in collaboration with eGIS and ISD. Visit the Equity Explorer to explore educational attainment and other equity related datasets and indices, including the COVID Vulnerability and Recovery Index. High School Graduate or Higher rates for census tracts in LA County from the US Census American Communities Survey (ACS), 2023. Estimates are based on 2020 census tract boundaries, and tracts are joined to 2021 Supervisorial Districts, Service Planning Areas (SPA), and Countywide Statistical Areas (CSA). For more information about this dataset, please contact egis@isd.lacounty.gov.
The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Civil Engineering; Gis Graduate Program. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Civil Engineering; Gis Graduate Program. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
Formation transfrontalière UniGR: Master in Border Studies (MA) - Source: UniGR
This linear chart displays the number of PERM cases filed for graduates in Civil Engineering; Gis Graduate Program from 2020 to 2023, highlighting the trends and changes in sponsorship over the years. It provides a deep dive into how graduates in this specific major have engaged with potential employers for permanent residency in the U.S., illustrating the major’s effectiveness in connecting students with career opportunities that lead to permanent residency
Displays citywide address points using TRANSPO.MAFDAP_PV. Differs from TRANSPO.DAP in that it contains address data. Attributes include house number and modifier, directional, street name, and street type. Does not display when zoomed out beyond 1:10,000. Labels are based on the attribute MAF_HSENUMMOD and do not display when zoomed out beyond 1:3,000. ATTRIBUTE INFORMATION: MAILUSECODE ? Identifies suitability of MAF address and associated MAFUNIT record(s) for use as a mailing address. This field serves as an indicator whether the address is being utilized in the City?s Utility Billing System. If so, it is more likely (but still not guaranteed) to be a valid mailing address. DCLUSTAT - Description of address establishment and validation status related to DCLU business process. Valid values: ?INITIAL VALUE? ? SPU-added records are assigned this value upon creation. ?DRAFT? ? only DPD-added records are assigned this value upon creation. ?FIELD VERIFIED? ? only DPD can assign this value. Indicates that DPD at some point conducted a site visit. This value is not reliably assigned and is not necessarily an indicator of a correct address. ?CANCELED? ? only DPD can assign this value. The address was never utilized. ?RETIRED? ? DPD or SPU can assign this value. The address may have been utilized for some period of time but was then replaced by a different address for the location or retired from use completely. DCLUSTATDT - Date of creation or modification of record. SOURCENAME - Descriptive character string identifying agency, department or divisional record source or usage. Valid values: ?DPD_MAF? ? Added or modified by DPD ?CGDB_MAFEDITS? ? Added or modified by SPU ?INIT_MAF? ? The initial record value, likely harvested from King County Assessor data when the MAF/DAP was first implemented.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UniGR cross-border study programme: Erasmus Mundus Master in Language and Communication Technologies (MA) Source: UniGR Link to interactive map: https://map.gis-gr.eu/theme/main?version=3&zoom=8&X=708580&Y=6429642&lang=fr&rotation=0&layers=2240&opacities=1&bgLayer=basemap_2015_global Link to Geocatalog: https://geocatalogue.gis-gr.eu/geonetwork/srv/eng/catalog.search#/metadata/5a4afa26-fa3b-4557-88d5-be6353bd321c This dataset is published in the view service (WMS) available at: https://ws.geoportail.lu/wss/service/GR_Crossborder_programmes_humanities_arts_2023_WMS/guest with layer name(s): -UniGR_Erasmus_Mundus_Master_MA
The Master List of Schools is a record of all schools in South Africa. The data forms part of the national Education Management Information Systems (EMIS) database used to inform education policymakers and managers in the Department of Basic Education (DBE) and the Provincial education departments, as well as to provide valuable information to external stakeholders. The list is maintained by provincial departments and regularly sent to DBE for updating. A key function of the master list is to uniquely identify each school in the country through a school identifier called the EMIS number. Additionally, the list contains data on school quintiles - categories (quintiles) based on the socioeconomic status of the community in which the school is situated. Analyses comparing schools' performance often use school quintiles as control measures for socioeconomic status, to take into account the effect of, for example, poor infrastructure, shortage of materials and deprived home backgrounds on school performance. There are also other basic data fields in the school master list that could provide the means to answer some of the most frequently asked questions about learner enrolment, teachers and learner-teacher ratio of schools. It is a useful dataset for education planners and researchers and is even widely used in the private sector by those who regularly deal with schools.
The data has national coverage
Individuals and institutions
The survey covers all schools (ordinary and special needs) in South Africa, both public and independent.
Administrative records and survey data
Other
Data from the SNAP survey and ANA that are used to compile the Master List of Schools is collected with a survey questionnaire and educator forms. The principle completes the survey questionnaire and each educator (both state paid and other) in each school completes an educator form. Schools record their EMIS number provided by the DBE on the questionnaire and form for identification.
The 2023 series only includes data for quarter 2 and quarter 3. The GIS coordinates for schools in the Eastern Cape are incorrectly entered in the original data from the DBE. The data entered in the GIS_long variable is incorrectly entered into the GIS_lat variable. This issue only occurs for schools in the Eastern Cape (EC), all other GIS coordinates for all the other provinces is correct. Therefore, for geospatial analysis, users can swap the GIS coordiate data only for the Eastern Cape.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Masters Of Science In Gis Technology. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Masters Of Science In Gis Technology. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
The Narcotic Treatment Program Master List contains a list of all state-licensed and certified narcotic treatment programs. The Master List contains vital information for each program listed and additional details, such as the program’s address and contact information, total capacity, hours of operation and program director and medical director.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geography (Gis Specialty). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geography (Gis Specialty). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Geogrpahy Information Systems (Gis). It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Geogrpahy Information Systems (Gis). This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
The Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming, Montana, and Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (yell_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (yell_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yell_geology_metadata_faq.pdf). Also included is a zip containing a Montana State University Master's thesis and supporting documents and data. The thesis focuses on addressing map boundary inconsistencies and remapping portions of the park. Data and documents supporting the thesis are 1.) a geodatabase containing field data points, 2.) a collection of documents describing field sites, 3.) spreadsheets containing geochemical analysis results, and 4.) photographs taken during field work. Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey, Montana Bureau of Mines and Geology and Montana State University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yell_geology_metadata.txt or yell_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Explore the progression of average salaries for graduates in Master'S Degree In Geography With Concentration In Gis from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Master'S Degree In Geography With Concentration In Gis relative to other fields. This data is essential for students assessing the return on investment of their education in Master'S Degree In Geography With Concentration In Gis, providing a clear picture of financial prospects post-graduation.
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Gis. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Gis. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
The Digital Geologic-GIS Map of Knife River Indian Villages National Historic Site and Vicinity, North Dakota is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (knri_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (knri_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (knri_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (knri_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (knri_geology_metadata_faq.pdf). Please read the knri_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: University of North Dakota, Department of Anthropology and Archeology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (knri_geology_metadata.txt or knri_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Master'S Degree In Geography With Concentration In Gis. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Master'S Degree In Geography With Concentration In Gis. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
Count of high school graduates for each public school in Alaska. Data covers the School Year 2013 to the present. Each year's count includes students graduating at any point during the school year (July 1 to June 30).Source: Alaska Department of Education & Early Development
This data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: Alaska Department of Education & Early Development Data Center.