https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Geographic Information System (GIS) market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market, estimated at $25 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a Compound Annual Growth Rate (CAGR) of approximately 8%. Key drivers include the rising demand for location-based services, the increasing use of GIS in urban planning and smart city initiatives, and the proliferation of readily available geospatial data. Furthermore, advancements in cloud computing, artificial intelligence, and big data analytics are enhancing GIS capabilities, leading to wider applications in environmental monitoring, disaster management, and precision agriculture. The government and utilities sector remains a dominant market segment, followed by the business sector, which is rapidly adopting GIS solutions for operational efficiency and strategic decision-making. Android-based GIS systems are currently the most prevalent, reflecting the widespread use of Android devices, although iOS and Windows-based systems maintain significant market shares. Competitive landscape analysis reveals key players such as Environmental Systems Research Institute (Esri), Hexagon, Pitney Bowes, and SuperMap actively innovating and expanding their market presence through strategic partnerships and technological advancements. Regional variations in market growth are expected, with North America and Europe maintaining leading positions due to high technological adoption rates and robust economies. However, Asia-Pacific is projected to witness the fastest growth in the coming years, driven by rapid urbanization, economic development, and increasing government investments in infrastructure projects. Restraints to market growth include the high initial investment costs associated with implementing GIS solutions and the need for specialized technical expertise. Nevertheless, the long-term benefits of GIS, encompassing improved efficiency, better decision-making, and enhanced resource management, are expected to overcome these barriers, resulting in sustained market expansion throughout the forecast period. The continuous development of user-friendly GIS software and services is further expected to fuel broader adoption across diverse user groups.
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The photogrammetry software market is experiencing robust growth, driven by increasing adoption across diverse sectors like construction, engineering, and surveying. The market's expansion is fueled by several key factors: the rising availability of high-resolution imagery from drones and satellites, advancements in processing power enabling faster and more accurate 3D model generation, and a growing demand for precise spatial data for various applications, including infrastructure development, urban planning, and precision agriculture. The market is segmented based on software type (cloud-based vs. desktop), application (mapping, modeling, measurement), and end-user industry. Major players like Hexagon, Trimble, and Autodesk dominate the market with their comprehensive solutions, while smaller companies are innovating with specialized features and cost-effective options. Competition is fierce, with companies focusing on improving accuracy, ease of use, and integration with other software and hardware. We project a continued, albeit moderated, growth rate given the maturity of the technology, the rising cost of entry for new players, and cyclical trends within construction. This projection is based on publicly available information regarding competitor activity and technological advancements in the sector. While the market shows strong potential for expansion, certain factors pose challenges. The high initial investment costs for software and hardware can be a barrier for smaller businesses. The need for specialized skills to operate the software and interpret the generated data also requires substantial training resources. Furthermore, data privacy concerns and regulations surrounding the use of aerial imagery must be navigated effectively. Nonetheless, the advantages of accurate and detailed 3D models – including reduced project costs, improved decision-making, and enhanced safety – continue to drive demand. The ongoing development of more user-friendly interfaces and automation features will likely expand the market further by making the technology accessible to a broader range of users. The market's future hinges on continuous innovation, efficient software development, and industry collaboration to further address these challenges.
The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global 3D mapping and 3D modeling software market size was valued at approximately USD 4.5 billion in 2023 and is expected to reach USD 9.8 billion by 2032, growing at a CAGR of 9.1% during the forecast period. This significant growth is driven by continuous advancements in technology, surging demand across various industries, and the increasing adoption of 3D graphics in visualization, simulation, and planning processes.
One of the primary growth factors of the 3D mapping and 3D modeling software market is the rapid technological advancements in computing power, graphics processing units (GPUs), and software algorithms. These advancements have made it possible to create highly detailed and realistic 3D models, which are being utilized in a wide range of applications including urban planning, disaster management, and entertainment. Furthermore, the growing trend of digital twins in the manufacturing and construction sectors is further propelling the demand for advanced 3D mapping and modeling solutions.
In addition to technological advancements, the growing adoption of 3D mapping and modeling software in the healthcare industry is another crucial factor driving market growth. Medical professionals are increasingly using 3D models for pre-surgical planning, patient diagnosis, and treatment simulation. The ability to create accurate anatomical models aids in better understanding of complex medical conditions, thereby improving patient outcomes. Moreover, the integration of 3D technology with virtual and augmented reality is opening new frontiers in medical training and remote surgeries.
The entertainment industry also plays a significant role in the expansion of the 3D mapping and modeling software market. The application of 3D technology in film production, gaming, and virtual reality experiences has revolutionized the way content is created and consumed. High demand for immersive and interactive experiences is pushing the boundaries of what 3D software can achieve. This has led to substantial investments in research and development, further enhancing the capabilities of these software solutions.
Building 3D Modeling Software has become an integral part of the technological advancements driving the 3D mapping and modeling software market. These tools are essential for creating detailed and accurate representations of physical spaces, which are crucial for various applications such as architecture, urban planning, and construction. By enabling users to visualize and manipulate complex structures in a virtual environment, Building 3D Modeling Software enhances design precision and efficiency. This capability is particularly beneficial for architects and engineers who need to test different design scenarios and optimize their projects before actual construction begins. The software's ability to integrate with other technologies, such as virtual reality and augmented reality, further expands its utility, offering immersive experiences that facilitate better communication and collaboration among project stakeholders.
Regional outlook reveals that North America holds the largest share in the 3D mapping and 3D modeling software market, owing to the early adoption of advanced technologies and strong presence of key market players. However, the Asia-Pacific region is expected to witness the highest growth rate during the forecast period. This growth is attributed to the rapid urbanization, expanding construction activities, and increasing investments in infrastructure development in countries like China and India.
In the component segment, the market is categorized into software and services. The software component dominates the market due to its extensive use in creating detailed 3D models across various industries. The continuous evolution of software capabilities, driven by advancements in artificial intelligence and machine learning, has enabled the development of more accurate and efficient modeling tools. These tools are essential for planning and simulation in sectors like architecture, construction, and urban planning.
The services component, though smaller in comparison to software, is gaining traction due to the increasing need for customization and technical support. Services include consulting, implementation, training, and maintenance, which are crucial for the effective deployment and utilization of 3D mappi
The Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Knowledge Area Mapping Map market is experiencing robust growth, driven by the increasing need for effective knowledge management and improved organizational efficiency across various sectors. While precise market size figures for the base year (2025) are unavailable, a reasonable estimation, considering typical CAGR growth rates in similar software markets (let's assume a conservative 15% CAGR for illustrative purposes), suggests a market size of approximately $500 million in 2025. This growth is fueled by several key factors: the expanding adoption of digital transformation initiatives within enterprises, the rising demand for data-driven decision-making, and the need for streamlined workflows to enhance productivity. The market is segmented by application (e.g., project management, research & development, customer support) and type (e.g., cloud-based, on-premise solutions), with cloud-based solutions gaining significant traction due to their scalability and accessibility. Geographical expansion is another significant driver, with North America currently holding a substantial market share followed by Europe and Asia-Pacific regions exhibiting strong growth potential. However, challenges such as high initial implementation costs, the need for skilled personnel, and the potential for data security breaches act as restraints on market expansion. Looking ahead to 2033, the market is projected to continue its upward trajectory, propelled by technological advancements such as AI-powered knowledge mapping and improved integration with existing enterprise systems. The increasing focus on employee knowledge sharing and organizational learning further strengthens the demand for sophisticated knowledge area mapping tools. While specific regional breakdowns require more granular data, we can anticipate sustained growth across all major regions, with emerging economies in Asia-Pacific potentially demonstrating faster growth rates than mature markets in North America and Europe. The competitive landscape is dynamic, with a mix of established players and emerging startups vying for market share through innovation and strategic partnerships. Continuous advancements in the technology and expanding applications are expected to drive significant market expansion during the forecast period (2025-2033).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Access National Hydrography ProductsThe National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.The NHD is a national framework for assigning reach addresses to water-related entities, such as industrial discharges, drinking water supplies, fish habitat areas, wild and scenic rivers. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network, much like addresses on streets. Once linked to the NHD by their reach addresses, the upstream/downstream relationships of these water-related entities--and any associated information about them--can be analyzed using software tools ranging from spreadsheets to geographic information systems (GIS). GIS can also be used to combine NHD-based network analysis with other data layers, such as soils, land use and population, to help understand and display their respective effects upon one another. Furthermore, because the NHD provides a nationally consistent framework for addressing and analysis, water-related information linked to reach addresses by one organization (national, state, local) can be shared with other organizations and easily integrated into many different types of applications to the benefit of all.Statements of attribute accuracy are based on accuracy statements made for U.S. Geological Survey Digital Line Graph (DLG) data, which is estimated to be 98.5 percent. One or more of the following methods were used to test attribute accuracy: manual comparison of the source with hardcopy plots; symbolized display of the DLG on an interactive computer graphic system; selected attributes that could not be visually verified on plots or on screen were interactively queried and verified on screen. In addition, software validated feature types and characteristics against a master set of types and characteristics, checked that combinations of types and characteristics were valid, and that types and characteristics were valid for the delineation of the feature. Feature types, characteristics, and other attributes conform to the Standards for National Hydrography Dataset (USGS, 1999) as of the date they were loaded into the database. All names were validated against a current extract from the Geographic Names Information System (GNIS). The entry and identifier for the names match those in the GNIS. The association of each name to reaches has been interactively checked, however, operator error could in some cases apply a name to a wrong reach.Points, nodes, lines, and areas conform to topological rules. Lines intersect only at nodes, and all nodes anchor the ends of lines. Lines do not overshoot or undershoot other lines where they are supposed to meet. There are no duplicate lines. Lines bound areas and lines identify the areas to the left and right of the lines. Gaps and overlaps among areas do not exist. All areas close.The completeness of the data reflects the content of the sources, which most often are the published USGS topographic quadrangle and/or the USDA Forest Service Primary Base Series (PBS) map. The USGS topographic quadrangle is usually supplemented by Digital Orthophoto Quadrangles (DOQs). Features found on the ground may have been eliminated or generalized on the source map because of scale and legibility constraints. In general, streams longer than one mile (approximately 1.6 kilometers) were collected. Most streams that flow from a lake were collected regardless of their length. Only definite channels were collected so not all swamp/marsh features have stream/rivers delineated through them. Lake/ponds having an area greater than 6 acres were collected. Note, however, that these general rules were applied unevenly among maps during compilation. Reach codes are defined on all features of type stream/river, canal/ditch, artificial path, coastline, and connector. Waterbody reach codes are defined on all lake/pond and most reservoir features. Names were applied from the GNIS database. Detailed capture conditions are provided for every feature type in the Standards for National Hydrography Dataset available online through https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/NHD%201999%20Draft%20Standards%20-%20Capture%20conditions.PDF.Statements of horizontal positional accuracy are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For horizontal accuracy, this standard is met if at least 90 percent of points tested are within 0.02 inch (at map scale) of the true position. Additional offsets to positions may have been introduced where feature density is high to improve the legibility of map symbols. In addition, the digitizing of maps is estimated to contain a horizontal positional error of less than or equal to 0.003 inch standard error (at map scale) in the two component directions relative to the source maps. Visual comparison between the map graphic (including digital scans of the graphic) and plots or digital displays of points, lines, and areas, is used as control to assess the positional accuracy of digital data. Digital map elements along the adjoining edges of data sets are aligned if they are within a 0.02 inch tolerance (at map scale). Features with like dimensionality (for example, features that all are delineated with lines), with or without like characteristics, that are within the tolerance are aligned by moving the features equally to a common point. Features outside the tolerance are not moved; instead, a feature of type connector is added to join the features.Statements of vertical positional accuracy for elevation of water surfaces are based on accuracy statements made for U.S. Geological Survey topographic quadrangle maps. These maps were compiled to meet National Map Accuracy Standards. For vertical accuracy, this standard is met if at least 90 percent of well-defined points tested are within one-half contour interval of the correct value. Elevations of water surface printed on the published map meet this standard; the contour intervals of the maps vary. These elevations were transcribed into the digital data; the accuracy of this transcription was checked by visual comparison between the data and the map.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for 3D mapping and modeling in the game industry was valued at approximately $4.2 billion in 2023, and it is projected to grow to around $12.5 billion by 2032, exhibiting a robust CAGR of 12.8% during the forecast period. This significant growth is driven by the increasing demand for immersive gaming experiences and advancements in graphics technology.
One of the primary growth factors for the 3D mapping and modeling market in gaming is the rapid technological advancements in computer graphics and 3D rendering technologies. As game developers strive to create more realistic and immersive experiences, the demand for sophisticated 3D mapping and modeling tools increases. Additionally, the gaming industry's shift towards virtual reality (VR) and augmented reality (AR) platforms necessitates intricate 3D environments, further propelling the market growth.
Another critical factor contributing to the market's expansion is the rising popularity of mobile gaming. With the widespread adoption of smartphones and tablets, mobile gaming has become a significant segment within the gaming industry. Game developers are increasingly incorporating high-quality 3D graphics into mobile games to attract and retain users, thereby boosting the demand for 3D mapping and modeling software and services. The proliferation of high-performance mobile devices also supports this trend, enabling smoother and more visually appealing gaming experiences.
The increasing investment in the gaming industry by major tech companies and entertainment giants is also driving market growth. Companies like Facebook, Google, and Sony are investing heavily in gaming technologies, including 3D mapping and modeling, to enhance their gaming portfolios and capitalize on the growing market. These investments are leading to the development of more advanced tools and platforms, making high-quality 3D mapping and modeling more accessible to game developers of all sizes.
The introduction of the 3D Gaming Console has revolutionized the way players experience video games. These consoles offer a more immersive and interactive experience by utilizing advanced 3D graphics and motion-sensing technology. With the ability to render lifelike visuals and simulate realistic environments, 3D gaming consoles have become a popular choice among gamers seeking a deeper level of engagement. The rise of these consoles is also driving demand for more sophisticated 3D mapping and modeling tools, as developers strive to create games that fully leverage the capabilities of this hardware. As the technology continues to evolve, we can expect even more innovative features and enhancements in future gaming consoles, further propelling the market growth.
Regionally, North America holds a significant share of the 3D mapping and modeling market in gaming, primarily due to the presence of major gaming companies and technology providers. The region's strong technological infrastructure and high consumer spending on gaming also contribute to its market dominance. However, the Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by the burgeoning gaming industry in countries like China, Japan, and South Korea. The increasing number of gamers and the rising popularity of esports in these countries are key factors fueling the market's growth in the region.
The 3D mapping and modeling market in the gaming industry can be segmented based on components into software and services. The software segment encompasses various tools and applications used for creating, editing, and rendering 3D models and maps. This segment is expected to hold a significant share of the market due to the continuous advancements in software technologies and the increasing demand for high-quality, realistic game graphics.
Advanced 3D mapping and modeling software offers a range of features such as real-time rendering, photorealistic textures, and highly detailed environments, which are essential for creating immersive gaming experiences. The integration of artificial intelligence (AI) and machine learning (ML) into these software tools is further enhancing their capabilities, allowing for more efficient and automated processes. As a result, game developers can produce complex 3D models more quickly and at a lower cost.
On the ot
description: In May 2014, staff at the San Bernardino National Wildlife Refuge (SBNWR) requested the production of a vegetation map to document the ongoing restoration of the refuge. Utilizing object-based image analysis (OBIA) a 9 class vegetation map was produced. This was a piloted effort to develop a simple, repeatable and low-cost land cover mapping framework that could be carried out on other refuges. Thus, iterative steps were taken and refined as part of the mapping process. This document has a Digital Object Identifier: http://dx.doi.org/10.7944/W3WC7M; abstract: In May 2014, staff at the San Bernardino National Wildlife Refuge (SBNWR) requested the production of a vegetation map to document the ongoing restoration of the refuge. Utilizing object-based image analysis (OBIA) a 9 class vegetation map was produced. This was a piloted effort to develop a simple, repeatable and low-cost land cover mapping framework that could be carried out on other refuges. Thus, iterative steps were taken and refined as part of the mapping process. This document has a Digital Object Identifier: http://dx.doi.org/10.7944/W3WC7M
This software archive is superseded by Hydrologic Toolbox v1.1.0, available at the following citation: Barlow, P.M., McHugh, A.R., Kiang, J.E., Zhai, T., Hummel, P., Duda, P., and Hinz, S., 2024, U.S. Geological Survey Hydrologic Toolbox version 1.1.0 software archive: U.S. Geological Survey software release, https://doi.org/10.5066/P13VDNAK. The U.S. Geological Survey Hydrologic Toolbox is a Windows-based desktop software program that provides a graphical and mapping interface for analysis of hydrologic time-series data with a set of widely used and standardized computational methods. The software combines the analytical and statistical functionality provided in the U.S. Geological Survey (USGS) Groundwater (Barlow and others, 2014) and Surface-Water (Kiang and others, 2018) Toolboxes and provides several enhancements to these programs. The main analysis methods are the computation of hydrologic-frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10); the computation of design flows, including biologically based flows; the computation of flow-duration curves and duration hydrographs; eight computer-programming methods for hydrograph separation of a streamflow time series, including the BFI (Base-flow index), HYSEP, PART, and SWAT Bflow methods and Eckhardt’s two-parameter digital-filtering method; and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater-recharge values from streamflow data. Several of the statistical methods provided in the Hydrologic Toolbox are used primarily for computation of critical low-flow statistics. The Hydrologic Toolbox also facilitates retrieval of streamflow and groundwater-level time-series data from the USGS National Water Information System and outputs text reports that describe their analyses. The Hydrologic Toolbox supersedes and replaces the Groundwater and Surface-Water Toolboxes. The Hydrologic Toolbox was developed by use of the DotSpatial geographic information system (GIS) programming library, which is part of the MapWindow project (MapWindow, 2021). DotSpatial is a nonproprietary, open-source program written for the .NET framework that includes a spatial data viewer and GIS capabilities. This software archive is designed to document different versions of the Hydrologic Toolbox. Details about version changes are provided in the “Release.txt” file with this software release. Instructions for installing the software are provided in files “Installation_instructions.pdf” and “Installation_instructions.txt.” The “Installation_instructions.pdf” file includes screen captures of some of the installation steps, whereas the “Installation_instructions.txt” file does not. Each version of the Hydrologic Toolbox is provided in a separate .zip file. Citations: Barlow, P.M., Cunningham, W.L., Zhai, T., and Gray, M., 2014, U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0)—User guide for estimation of base flow, runoff, and groundwater recharge from streamflow data: U.S. Geological Survey Techniques and Methods 3–B10, 27 p., https://doi.org/10.3133/tm3B10. Kiang, J.E., Flynn, K.M., Zhai, T., Hummel, P., and Granato, G., 2018, SWToolbox: A surface-water toolbox for statistical analysis of streamflow time series: U.S. Geological Survey Techniques and Methods, book 4, chap. A–11, 33 p., https://doi.org/10.3133/tm4A11. MapWindow, 2021, MapWindow software, accessed January 9, 2021, at https://www.mapwindow.org/#home.
A digital raster graphic (DRG) is a scanned image of an U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map. The map is scanned at a minimum resolution of 250 dots per inch. DRG's are created by scanning published paper maps on high-resolution scanners. The raster image is georeferenced and fit to the UTM projection. Colors are standardized to remove scanner limitations and artifacts. The average data set size is about 6 megabytes in Tagged Image File Format (TIFF) with PackBits compression. DRG's can be easily combined with other digital cartographic products such as digital elevation models (DEM) and digital orthophoto quadrangles (DOQ). DRG's are stored as rectified TIFF files in geoTIFF format. GeoTIFF is a relatively new TIFF image storage format that incorporates georeferencing information in the header. This allows software, such as ArcView, ARC/INFO, or EPPL7 to reference the image without an additional header or world file. Within the Minnesota Department of Natural Resources Core GIS data set the DRG's have been processed to be in compliance with departmental data standards (UTM Extended Zone 15, NAD83 datum) and the map collar information has been removed to facilitate the display of the DRG's in a seamless fashion. These DRG's were clipped and transformed to UTM Zone 15 using EPPL7 Raster GIS.
DRGs are a useful backdrop for mapping a variety of features. Colors representing various items in the image (contours, urban areas, vegetation, etc.) can be turned off or highlighted depending on the mapping application. In ArcView this is done by choosing the "Colormap" option when editing the DRG theme's legend. A variety of other ArcView tools exist to make working with DRGs easier.
Also included:
Metadata for the scanned USGS 24k Topograpic Map Series (also known as 24k Digital Raster Graphic). Each scanned map is represented by a polygon in the layer and the map date, photo revision date, and photo interpretation date are found in the corresponding attribute record. This layer facilitates searching for DRGs which were created or revised on or between particular dates. Also useful for ascertaining when a particular map sheet was created.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: In this work we introduce an object-based method, applied to urban land cover mapping. The method is implemented with two open-source tools: SIPINA, a data mining software package; and InterIMAGE, an object-based image analysis system. Initially, segmentation, feature extraction and sample selection procedures are performed with InterIMAGE. In order to reduce the time and subjectivity involved to develop the decision rules in InterIMAGE, a data mining step is then carried out with SIPINA. In sequence, the decision trees delivered by SIPINA are analysed and encoded into InterIMAGE decision rules for the final classification step. Experiments were conducted using a subset of a GeoEye image, acquired in January 01, 2013, covering the urban portion of the municipality of Goianésia, Brazil. Five decision tree induction algorithms, available in SIPINA, were tested: ID3, C45, GID3, Assistant86 and CHAID. The TAU and Kappa coefficients were used to evaluate the results. The TAU values obtained were in the range of 0.66 and 0.70, while those for Kappa varied from 0.65 to 0.69.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
The GreenLand Platform is a free GIS software for geospatial data management and analysis, image processing, graphics/maps production, spatial modeling, and visualization. The main objective of the GreenLand application is the satellite images oriented process description and parallel and distributed execution. In this case each process description could be represented as a DAG (Direct Acyclic Graph). The nodes of the graph could be basic operators or sub-graphs. The GreenLand is a scalable Grid based application in terms of number of users, computation resources, and huge data repositories. Due to the computing and storage capabilities offered by the Grid infrastructure, the execution time is significantly improved in comparison with standalone computing resources.
The Digital Geologic-GIS Map of Yosemite Valley Glacial and Postglacial Deposits, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yova_glacial_and_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yova_glacial_and_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yova_glacial_and_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yose_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yova_glacial_and_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yova_glacial_and_surficial_geology_metadata_faq.pdf). Please read the yose_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yova_glacial_and_surficial_geology_metadata.txt or yova_glacial_and_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Audio Cartography project investigated the influence of temporal arrangement on the interpretation of information from a simple spatial data set. I designed and implemented three auditory map types (audio types), and evaluated differences in the responses to those audio types.
The three audio types represented simplified raster data (eight rows x eight columns). First, a "sequential" representation read values one at a time from each cell of the raster, following an English reading order, and encoded the data value as loudness of a single fixed-duration and fixed-frequency note. Second, an augmented-sequential ("augmented") representation used the same reading order, but encoded the data value as volume, the row as frequency, and the column as the rate of the notes play (constant total cell duration). Third, a "concurrent" representation used the same encoding as the augmented type, but allowed the notes to overlap in time.
Participants completed a training session in a computer-lab setting, where they were introduced to the audio types and practiced making a comparison between data values at two locations within the display based on what they heard. The training sessions, including associated paperwork, lasted up to one hour. In a second study session, participants listened to the auditory maps and made decisions about the data they represented while the fMRI scanner recorded digital brain images.
The task consisted of listening to an auditory representation of geospatial data ("map"), and then making a decision about the relative values of data at two specified locations. After listening to the map ("listen"), a graphic depicted two locations within a square (white background). Each location was marked with a small square (size: 2x2 grid cells); one square had a black solid outline and transparent black fill, the other had a red dashed outline and transparent red fill. The decision ("response") was made under one of two conditions. Under the active listening condition ("active") the map was played a second time while participants made their decision; in the memory condition ("memory"), a decision was made in relative quiet (general scanner noises and intermittent acquisition noise persisted). During the initial map listening, participants were aware of neither the locations of the response options within the map extent, nor the response conditions under which they would make their decision. Participants could respond any time after the graphic was displayed; once a response was entered, the playback stopped (active response condition only) and the presentation continued to the next trial.
Data was collected in accordance with a protocol approved by the Institutional Review Board at the University of Oregon.
Additional details about the specific maps used in this are available through University of Oregon's ScholarsBank (DOI 10.7264/3b49-tr85).
Details of the design process and evaluation are provided in the associated dissertation, which is available from ProQuest and University of Oregon's ScholarsBank.
Scripts that created the experimental stimuli and automated processing are available through University of Oregon's ScholarsBank (DOI 10.7264/3b49-tr85).
Conversion of the DICOM files produced by the scanner to NiFTi format was performed by MRIConvert (LCNI). Orientation to standard axes was performed and recorded in the NiFTi header (FMRIB, fslreorient2std). The excess slices in the anatomical images that represented tissue in the next were trimmed (FMRIB, robustfov). Participant identity was protected through automated defacing of the anatomical data (FreeSurfer, mri_deface), with additional post-processing to ensure that no brain voxels were erroneously removed from the image (FMRIB, BET; brain mask dilated with three iterations "fslmaths -dilM").
The dcm2niix tool (Rorden) was used to create draft JSON sidecar files with metadata extracted from the DICOM headers. The draft sidecar file were revised to augment the JSON elements with additional tags (e.g., "Orientation" and "TaskDescription") and to make a more human-friendly version of tag contents (e.g., "InstitutionAddress" and "DepartmentName"). The device serial number was constant throughout the data collection (i.e., all data collection was conducted on the same scanner), and the respective metadata values were replaced with an anonymous identifier: "Scanner1".
The stimuli consisted of eighteen auditory maps. Spatial data were generated with the rgeos, sp, and spatstat libraries in R; auditory maps were rendered with the Pyo (Belanger) library for Python and prepared for presentation in Audacity. Stimuli were presented using PsychoPy (Peirce, 2007), which produced log files from which event details were extracted. The log files included timestamped entries for stimulus timing and trigger pulses from the scanner.
Audacity® software is copyright © 1999-2018 Audacity Team. Web site: https://audacityteam.org/. The name Audacity® is a registered trademark of Dominic Mazzoni.
FMRIB (Functional Magnetic Resonance Imaging of the Brain). FMRIB Software Library (FSL; fslreorient2std, robustfov, BET). Oxford, v5.0.9, Available: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FreeSurfer (mri_deface). Harvard, v1.22, Available: https://surfer.nmr.mgh.harvard.edu/fswiki/AutomatedDefacingTools)
LCNI (Lewis Center for Neuroimaging). MRIConvert (mcverter), v2.1.0 build 440, Available: https://lcni.uoregon.edu/downloads/mriconvert/mriconvert-and-mcverter
Peirce, JW. PsychoPy–psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2):8 – 13, 2007. Software Available: http://www.psychopy.org/
Python software is copyright © 2001-2015 Python Software Foundation. Web site: https://www.python.org
Pyo software is copyright © 2009-2015 Olivier Belanger. Web site: http://ajaxsoundstudio.com/software/pyo/.
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: https://www.R-project.org/.
rgeos software is copyright © 2016 Bivand and Rundel. Web site: https://CRAN.R-project.org/package=rgeos
Rorden, C. dcm2niix, v1.0.20171215, Available: https://github.com/rordenlab/dcm2niix
spatstat software is copyright © 2016 Baddeley, Rubak, and Turner. Web site: https://CRAN.R-project.org/package=spatstat
sp software is copyright © 2016 Pebesma and Bivand. Web site: https://CRAN.R-project.org/package=sp
The Digital Geologic-GIS Map of Devils Tower National Monument, Wyoming is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (deto_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (deto_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (deto_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (deto_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (deto_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (deto_geology_metadata_faq.pdf). Please read the deto_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (deto_geology_metadata.txt or deto_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:4,800 and United States National Map Accuracy Standards features are within (horizontally) 4.1 meters or 13.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The distance between the atlas and individual brains at the anterior commissure, posterior commissure, and left and right anterior aspect of the caudate. All values are in millimeters.Landmark Variation.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The Geographic Information System (GIS) market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market, estimated at $25 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a Compound Annual Growth Rate (CAGR) of approximately 8%. Key drivers include the rising demand for location-based services, the increasing use of GIS in urban planning and smart city initiatives, and the proliferation of readily available geospatial data. Furthermore, advancements in cloud computing, artificial intelligence, and big data analytics are enhancing GIS capabilities, leading to wider applications in environmental monitoring, disaster management, and precision agriculture. The government and utilities sector remains a dominant market segment, followed by the business sector, which is rapidly adopting GIS solutions for operational efficiency and strategic decision-making. Android-based GIS systems are currently the most prevalent, reflecting the widespread use of Android devices, although iOS and Windows-based systems maintain significant market shares. Competitive landscape analysis reveals key players such as Environmental Systems Research Institute (Esri), Hexagon, Pitney Bowes, and SuperMap actively innovating and expanding their market presence through strategic partnerships and technological advancements. Regional variations in market growth are expected, with North America and Europe maintaining leading positions due to high technological adoption rates and robust economies. However, Asia-Pacific is projected to witness the fastest growth in the coming years, driven by rapid urbanization, economic development, and increasing government investments in infrastructure projects. Restraints to market growth include the high initial investment costs associated with implementing GIS solutions and the need for specialized technical expertise. Nevertheless, the long-term benefits of GIS, encompassing improved efficiency, better decision-making, and enhanced resource management, are expected to overcome these barriers, resulting in sustained market expansion throughout the forecast period. The continuous development of user-friendly GIS software and services is further expected to fuel broader adoption across diverse user groups.