2 datasets found
  1. o

    Grid Event Signature Library

    • openenergyhub.ornl.gov
    csv, excel, json
    Updated Aug 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Grid Event Signature Library [Dataset]. https://openenergyhub.ornl.gov/explore/dataset/gesl/
    Explore at:
    json, csv, excelAvailable download formats
    Dataset updated
    Aug 6, 2025
    Description

    The Grid Event Signature Library (GESL) initiative at DOE’s Oak Ridge National Laboratory (ORNL) and Lawrence Livermore National Laboratory (LLNL) is focused on the development of the well-defined, curated, and free-to-access power grid data repository with the goals of advancing the field of machine learning and artificial intelligence (ML/AI) for the grid and facilitating swift response against malfunctions of grid infrastructure.

  2. o

    Grid Event Signature Library - Summary

    • openenergyhub.ornl.gov
    csv, excel, json
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Grid Event Signature Library - Summary [Dataset]. https://openenergyhub.ornl.gov/explore/dataset/grid-event-signature-library-summary/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    Jan 6, 2025
    Description

    Event tags summary for The Grid Event Signature Library (GESL)

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Grid Event Signature Library [Dataset]. https://openenergyhub.ornl.gov/explore/dataset/gesl/

Grid Event Signature Library

Explore at:
56 scholarly articles cite this dataset (View in Google Scholar)
json, csv, excelAvailable download formats
Dataset updated
Aug 6, 2025
Description

The Grid Event Signature Library (GESL) initiative at DOE’s Oak Ridge National Laboratory (ORNL) and Lawrence Livermore National Laboratory (LLNL) is focused on the development of the well-defined, curated, and free-to-access power grid data repository with the goals of advancing the field of machine learning and artificial intelligence (ML/AI) for the grid and facilitating swift response against malfunctions of grid infrastructure.

Search
Clear search
Close search
Google apps
Main menu