47 datasets found
  1. U.S. wealth distribution Q2 2024

    • statista.com
    • alfareestrrf.ru
    • +1more
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. wealth distribution Q2 2024 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
    Explore at:
    Dataset updated
    Oct 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

  2. F

    Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles)...

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBSTP1300
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBSTP1300) from Q3 1989 to Q1 2025 about shares, net worth, wealth, percentile, Net, and USA.

  3. U.S. Gini gap between rich and poor 2023, by state

    • statista.com
    • ai-chatbox.pro
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. Gini gap between rich and poor 2023, by state [Dataset]. https://www.statista.com/statistics/227249/greatest-gap-between-rich-and-poor-by-us-state/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    New York was the state with the greatest gap between rich and poor, with a Gini coefficient score of 0.52 in 2023. Although not a state, District of Columbia was among the highest Gini coefficients in the United States that year.

  4. U.S. household income Gini Index 1990-2023

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. household income Gini Index 1990-2023 [Dataset]. https://www.statista.com/statistics/219643/gini-coefficient-for-us-individuals-families-and-households/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, according to the Gini coefficient, household income distribution in the United States was 0.47. This figure was at 0.43 in 1990, which indicates an increase in income inequality in the U.S. over the past 30 years. What is the Gini coefficient? The Gini coefficient, or Gini index, is a statistical measure of economic inequality and wealth distribution among a population. A value of zero represents perfect economic equality, and a value of one represents perfect economic inequality. The Gini coefficient helps to visualize income inequality in a more digestible way. For example, according to the Gini coefficient, the District of Columbia and the state of New York have the greatest amount of income inequality in the U.S. with a score of 0.51, and Utah has the greatest income equality with a score of 0.43. The Gini coefficient around the world The Gini coefficient is also an effective measure to help picture income inequality around the world. For example, in 2018 income inequality was highest in South Africa, while income inequality was lowest in Slovenia.

  5. g

    Replication Data for: Understanding Public Perceptions of Growing Economic...

    • datasearch.gesis.org
    • dataverse-staging.rdmc.unc.edu
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Franko, William (2020). Replication Data for: Understanding Public Perceptions of Growing Economic Inequality [Dataset]. http://doi.org/10.15139/S3/D9ZUIB
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    Franko, William
    Description

    While most Americans appear to acknowledge the large gap between the rich and the poor in the U.S., it is not clear if the public is aware of recent changes in income inequality. Even though economic inequality has grown substantially in recent decades, studies have shown that the public's perception of growing income disparities has remained mostly unchanged since the 1980s. This research offers an alternative approach to evaluating how public perceptions of inequality are developed. Centrally, it conceptualizes the public's response to growing economic disparities by applying theories of macro-political behavior and place-based contextual effects to the formation of aggregate perceptions about income inequality. It is argued that most of the public relies on basic information about the economy to form attitudes about inequality and that geographic context---in this case, the American states---plays a role in how views of income disparities are produced. A new measure of state perceptions of growing economic inequality over a 25-year period is used to examine whether the public is responsive to objective changes in economic inequality. Time-series cross-sectional analyses suggest that the public's perceptions of growing inequality are largely influenced by objective state economic indicators and state political ideology. This research has implications for how knowledgeable the public is of disparities between the rich and the poor, whether state context influences attitudes about inequality, and what role the public will have in determining how expanding income differences are addressed through government policy.

  6. Data from: The impact of income, land, and wealth inequality on agricultural...

    • zenodo.org
    • dataone.org
    • +1more
    bin
    Updated Jun 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michele Graziano Ceddia; Michele Graziano Ceddia (2022). Data from: The impact of income, land, and wealth inequality on agricultural expansion in Latin America [Dataset]. http://doi.org/10.5061/dryad.0sn4046
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 1, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Michele Graziano Ceddia; Michele Graziano Ceddia
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Latin America
    Description

    Agricultural expansion remains the most prominent proximate cause of tropical deforestation in Latin America, a region characterized by deforestation rates substantially above the world average and extremely high inequality. This paper deploys several multivariate statistical models to test whether different aspects of inequality, within a context of increasing agricultural productivity, promote agricultural expansion (Jevons paradox) or contraction (land-sparing) in 10 Latin American countries over 1990–2010. Here I show the existence of distinct patterns between the instantaneous and the overall (i.e., accounting for temporal lags) effect of increasing agricultural productivity, conditional on the degree of income, land, and wealth inequality. In a context of perfect equality, the instantaneous effect of increases in agricultural productivity is to promote agricultural expansion (Jevons paradox). When temporal lags are accounted for, agricultural productivity appears to be mainly land-sparing. Increases in the level of inequality, in all its forms, promote agricultural expansion, thus eroding the land-sparing effects of increasing productivity. The results also suggest that the instantaneous impact of inequality is larger than the overall effect (accounting for temporal lags) and that the effects of income inequality are stronger than those of land and wealth inequality, respectively. Reaping the benefits of increasing agricultural productivity, and achieving sustainable agricultural intensification in Latin America, requires policy interventions that specifically address inequality.

  7. N

    Income Distribution by Quintile: Mean Household Income in Grow, Wisconsin //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Grow, Wisconsin // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/grow-wi-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grow, Wisconsin
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Grow, Wisconsin, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 24,920, while the mean income for the highest quintile (20% of households with the highest income) is 291,431. This indicates that the top earners earn 12 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 591,479, which is 202.96% higher compared to the highest quintile, and 2373.51% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grow town median household income. You can refer the same here

  8. F

    GINI Index for the United States

    • fred.stlouisfed.org
    json
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). GINI Index for the United States [Dataset]. https://fred.stlouisfed.org/series/SIPOVGINIUSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2023 about gini, indexes, and USA.

  9. F

    Income Gini Ratio for Households by Race of Householder, All Races

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Gini Ratio for Households by Race of Householder, All Races [Dataset]. https://fred.stlouisfed.org/series/GINIALLRH
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Income Gini Ratio for Households by Race of Householder, All Races (GINIALLRH) from 1967 to 2023 about gini, households, income, and USA.

  10. Gini index: inequality of income distribution in China 2005-2023

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gini index: inequality of income distribution in China 2005-2023 [Dataset]. https://www.statista.com/statistics/250400/inequality-of-income-distribution-in-china-based-on-the-gini-index/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    This statistic shows the inequality of income distribution in China from 2005 to 2023 based on the Gini Index. In 2023, China reached a score of ************ points. The Gini Index is a statistical measure that is used to represent unequal distributions, e.g. income distribution. It can take any value between 1 and 100 points (or 0 and 1). The closer the value is to 100 the greater is the inequality. 40 or 0.4 is the warning level set by the United Nations. The Gini Index for South Korea had ranged at about **** in 2022. Income distribution in China The Gini coefficient is used to measure the income inequality of a country. The United States, the World Bank, the US Central Intelligence Agency, and the Organization for Economic Co-operation and Development all provide their own measurement of the Gini coefficient, varying in data collection and survey methods. According to the United Nations Development Programme, countries with the largest income inequality based on the Gini index are mainly located in Africa and Latin America, with South Africa displaying the world's highest value in 2022. The world's most equal countries, on the contrary, are situated mostly in Europe. The United States' Gini for household income has increased by around ten percent since 1990, to **** in 2023. Development of inequality in China Growing inequality counts as one of the biggest social, economic, and political challenges to many countries, especially emerging markets. Over the last 20 years, China has become one of the world's largest economies. As parts of the society have become more and more affluent, the country's Gini coefficient has also grown sharply over the last decades. As shown by the graph at hand, China's Gini coefficient ranged at a level higher than the warning line for increasing risk of social unrest over the last decade. However, the situation has slightly improved since 2008, when the Gini coefficient had reached the highest value of recent times.

  11. N

    Grow, Wisconsin annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grow, Wisconsin annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a5196421-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grow, Wisconsin
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Grow town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Grow town, the median income for all workers aged 15 years and older, regardless of work hours, was $46,250 for males and $26,563 for females.

    These income figures highlight a substantial gender-based income gap in Grow town. Women, regardless of work hours, earn 57 cents for each dollar earned by men. This significant gender pay gap, approximately 43%, underscores concerning gender-based income inequality in the town of Grow town.

    - Full-time workers, aged 15 years and older: In Grow town, among full-time, year-round workers aged 15 years and older, males earned a median income of $57,917, while females earned $37,500, leading to a 35% gender pay gap among full-time workers. This illustrates that women earn 65 cents for each dollar earned by men in full-time roles. This level of income gap emphasizes the urgency to address and rectify this ongoing disparity, where women, despite working full-time, face a more significant wage discrepancy compared to men in the same employment roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Grow town, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grow town median household income by race. You can refer the same here

  12. o

    Replication data for: Earnings Inequality and Other Determinants of Wealth...

    • openicpsr.org
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jess Benhabib; Alberto Bisin; Mi Luo (2017). Replication data for: Earnings Inequality and Other Determinants of Wealth Inequality [Dataset]. http://doi.org/10.3886/E113490V1
    Explore at:
    Dataset updated
    May 1, 2017
    Dataset provided by
    American Economic Association
    Authors
    Jess Benhabib; Alberto Bisin; Mi Luo
    Description

    We study the relation between the distribution of labor earnings and the distribution of wealth. We show, theoretically as well as empirically, that while labor earnings and precautionary savings are important determinants of wealth inequality factors, they cannot by themselves account for the thick tail of (the large top shares in) the observed distribution of wealth. Other determinants, like stochastic returns to wealth, as well as savings rates and rates of returns increasing in wealth, need to be accounted for.

  13. H

    Replication Data for: Political Context, Government Redistribution, and the...

    • dataverse.harvard.edu
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Franko (2016). Replication Data for: Political Context, Government Redistribution, and the Public's Response to Growing Economic Inequality [Dataset]. http://doi.org/10.7910/DVN/SYSOPW
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    Harvard Dataverse
    Authors
    William Franko
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    While most Americans appear to acknowledge the large gap between the rich and the poor in the U.S., it is not clear how the public has responded to recent changes in income inequality. The goal of this study is to make sense of several existing, and at times conflicting, perspectives on how changes in inequality affect public preferences for government action by demonstrating that each of these perspectives can simultaneously coexist in a logical manner. The argument put forward here is that growing inequality systematically shapes preferences for redistribution in different ways depending on two important factors: economic context and the type of redistribution being considered. Using time-series cross-sectional data covering over three decades and all 50 states, the findings show that context does affect the degree of the public's response to inequality and support for action is stronger for particular types of redistributive policy.

  14. F

    Income Inequality in Orange County, FL

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Income Inequality in Orange County, FL [Dataset]. https://fred.stlouisfed.org/series/2020RATIO012095
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Orange County, Florida
    Description

    Graph and download economic data for Income Inequality in Orange County, FL (2020RATIO012095) from 2010 to 2023 about Orange County, FL; Orlando; inequality; FL; income; and USA.

  15. d

    Replication Data for: The Fading American Dream: Trends in Absolute Income...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy (2023). Replication Data for: The Fading American Dream: Trends in Absolute Income Mobility Since 1940 [Dataset]. http://doi.org/10.7910/DVN/B9TEWM
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy
    Description

    This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.

  16. N

    Grow, Wisconsin households by income brackets: family, non-family, and...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grow, Wisconsin households by income brackets: family, non-family, and total, in 2023 inflation-adjusted dollars [Dataset]. https://www.neilsberg.com/insights/grow-wi-median-household-income/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grow, Wisconsin
    Variables measured
    Income Level, All households, Family households, Non-Family households, Percent of All households, Percent of Family households, Percent of Non-Family households
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income brackets (mentioned above) following an initial analysis and categorization. The percentage of all, family and nonfamily households were collected by grouping data as applicable. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents a breakdown of households across various income brackets in Grow, Wisconsin, as reported by the U.S. Census Bureau. The Census Bureau classifies households into different categories, including total households, family households, and non-family households. Our analysis of U.S. Census Bureau American Community Survey data for Grow, Wisconsin reveals how household income distribution varies among these categories. The dataset highlights the variation in number of households with income, offering valuable insights into the distribution of Grow town households based on income levels.

    Key observations

    • For Family Households: In Grow town, the majority of family households, representing 22.86%, earn $60,000 to $74,999, showcasing a substantial share of the community families falling within this income bracket. Conversely, the minority of family households, comprising 0.0%, have incomes falling Less than $10,000, representing a smaller but still significant segment of the community.
    • For Non-Family Households: In Grow town, the majority of non-family households, accounting for 19.35%, have income $200,000 or more, indicating that a substantial portion of non-family households falls within this income bracket. On the other hand, the minority of non-family households, comprising 0.0%, earn Less than $10,000, representing a smaller, yet notable, portion of non-family households in the community.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Income Level: The income level represents the income brackets ranging from Less than $10,000 to $200,000 or more in Grow, Wisconsin (As mentioned above).
    • All Households: Count of households for the specified income level
    • % All Households: Percentage of households at the specified income level relative to the total households in Grow, Wisconsin
    • Family Households: Count of family households for the specified income level
    • % Family Households: Percentage of family households at the specified income level relative to the total family households in Grow, Wisconsin
    • Non-Family Households: Count of non-family households for the specified income level
    • % Non-Family Households: Percentage of non-family households at the specified income level relative to the total non-family households in Grow, Wisconsin

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grow town median household income. You can refer the same here

  17. o

    Data and Code for: Rising Geographic Disparities in US Mortality

    • openicpsr.org
    delimited
    Updated Jun 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher L. Foote; Kavish P. Gandhi; Ellen Meara; Jonathan Skinner; Benjamin K. Couillard (2021). Data and Code for: Rising Geographic Disparities in US Mortality [Dataset]. http://doi.org/10.3886/E144041V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Jun 29, 2021
    Dataset provided by
    American Economic Association
    Authors
    Christopher L. Foote; Kavish P. Gandhi; Ellen Meara; Jonathan Skinner; Benjamin K. Couillard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The 21st century has been a period of rising inequality in both income and health. In this paper, we find that geographic inequality in mortality for midlife Americans increased by about 70 percent between 1992 and 2016. This was not simply because states like New York or California benefited from having a high fraction of college-educated residents who enjoyed the largest health gains during the last several decades. Nor was higher dispersion in mortality caused entirely by the increasing importance of "deaths of despair,'' or by rising spatial income inequality during the same period. Instead, over time, state-level mortality has become increasingly correlated with state-level income; in 1992 income explained only 3 percent of mortality inequality, but by 2016 state-level income explained 58 percent. These mortality patterns are consistent with the view that high-income states in 1992 were better able to enact public health strategies and adopt behaviors that, over the next quarter-century, resulted in pronounced relative declines in mortality. The substantial longevity gains in high-income states led to greater cross-state inequality in mortality.

  18. d

    Replication Data for: Polarization of the Rich: The New Democratic...

    • search.dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zacher, Sam (2023). Replication Data for: Polarization of the Rich: The New Democratic Allegiance of Affluent Americans and the Politics of Redistribution [Dataset]. http://doi.org/10.7910/DVN/YWFKKJ
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Zacher, Sam
    Description

    Affluent Americans used to vote for Republican politicians. Now they vote for Democrats. In this paper, I show detailed evidence for this decades-in-the-making trend and argue that it has important consequences for the U.S. politics of economic inequality and redistribution. Beginning in the 1990s, the Democratic Party has won increasing shares of rich, upper-middle income, high-income occupation, and stock-owning voters. This appears true across voters of all races and ethnicities, is concentrated among (but not exclusive to) college-educated voters, and is only true among voters living in larger metropolitan areas. In the 2010s, Democratic candidates' electoral appeal among affluent voters reached above-majority levels. I echo other scholars in maintaining that this trend is partially driven by increasingly “culturally liberal” views of educated voters and party elite polarization on those issues, but I additionally argue that the evolution and stasis of the parties' respective economic policy agendas has also been a necessary condition for the changing behavior of affluent voters. This reversal of an American politics truism means that the Democratic Party's attempts to cohere around an economically redistributive policy agenda in an era of rising inequality face real barriers.

  19. U.S household income shares of quintiles 1970-2023

    • statista.com
    • ai-chatbox.pro
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S household income shares of quintiles 1970-2023 [Dataset]. https://www.statista.com/statistics/203247/shares-of-household-income-of-quintiles-in-the-us/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    About 50.4 percent of the household income of private households in the U.S. were earned by the highest quintile in 2023, which are the upper 20 percent of the workers. In contrast to that, in the same year, only 3.5 percent of the household income was earned by the lowest quintile. This relation between the quintiles is indicative of the level of income inequality in the United States. Income inequalityIncome inequality is a big topic for public discussion in the United States. About 65 percent of U.S. Americans think that the gap between the rich and the poor has gotten larger in the past ten years. This impression is backed up by U.S. census data showing that the Gini-coefficient for income distribution in the United States has been increasing constantly over the past decades for individuals and households. The Gini coefficient for individual earnings of full-time, year round workers has increased between 1990 and 2020 from 0.36 to 0.42, for example. This indicates an increase in concentration of income. In general, the Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing. Income distribution is also affected by region. The state of New York had the widest gap between rich and poor people in the United States, with a Gini coefficient of 0.51, as of 2019. In global comparison, South Africa led the ranking of the 20 countries with the biggest inequality in income distribution in 2018. South Africa had a score of 63 points, based on the Gini coefficient. On the other hand, the Gini coefficient stood at 16.6 in Azerbaijan, indicating that income is widely spread among the population and not concentrated on a few rich individuals or families. Slovenia led the ranking of the 20 countries with the greatest income distribution equality in 2018.

  20. U.S. wealth distribution 1990-2024, by generation

    • statista.com
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. wealth distribution 1990-2024, by generation [Dataset]. https://www.statista.com/statistics/1376622/wealth-distribution-for-the-us-generation/
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the first quarter of 2024, 51.8 percent of the total wealth in the United States was owned by members of the baby boomer generation. In comparison, millennials own around 9.4 percent of total wealth in the U.S. In terms of population distribution, there is almost an equal share of millennials and baby boomers in the United States.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). U.S. wealth distribution Q2 2024 [Dataset]. https://www.statista.com/statistics/203961/wealth-distribution-for-the-us/
Organization logo

U.S. wealth distribution Q2 2024

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 29, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.

Search
Clear search
Close search
Google apps
Main menu