This raster represents a continuous surface of sage-grouse habitat suitability index (HSI, created using ArcGIS 10.2.2) values for Nevada during spring, which is a surrogate for habitat conditions during the sage-grouse breeding and nesting period. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Summer included telemetry locations (n = 14,058) from mid-March to June. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated using R Software (v 3.13) for each subregion and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Datasets incorporated into the Critical Habitat screening layer.
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada during summer, which is a surrogate for habitat conditions during the sage-grouse brood-rearing period. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Summer included locations (n = 11,743) from July to mid-October. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated was calculated for each subregion using R software (v 3.13) for each subregion using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the breeding season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California during summer¸ which is a surrogate for habitat conditions during the sage-grouse brood-rearing period. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Summer included telemetry locations (n = 11,743) from July to mid-October. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the summer season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection. Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Biodiversity features included in the analysis, their alignment with IFC PS6 Critical Habitat criteria and scenarios, and classification as ‘likely’ or ‘potential’ Critical Habitat.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Habitat data for aquatic invertebrates from the following sources:
Corbet, P.S., Suhling, F., Soendgerath, D., 2006. Voltinism of Odonata: a review. International Journal of Odonatology 9, 1–44. https://doi.org/10.1080/13887890.2006.9748261
Houghton DC. 2012. Biological diversity of the Minnesota caddisflies (Insecta, Trichoptera). Zookeys 189:1-389. https://doi.org/10.3897/zookeys.189.2043
Vieira, N. K., Poff, N. L., Carlisle, D. M., Moulton, S. R., Koski, M. L., & Kondratieff, B. C. (2006). A database of lotic invertebrate traits for North America. US Geological Survey Data Series, 187, 1-15. https://pubs.usgs.gov/ds/ds187/
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
International Journal of Biological and Chemical Sciences
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data on habitats of microbial organisms derived from the following sources:
Adam, R.D., 2017. Diplomonadida, in: Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O. (Eds.), Handbook of the Protists. Springer International Publishing, Cham, pp. 1–28. https://doi.org/10.1007/978-3-319-32669-6_1-1
Agatha S (2011) Global Diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and Brackish Sea Water. PLoS ONE 6(8): e22466. https://doi.org/10.1371/journal.pone.0022466
Alker AP, Smith GW, Kim K. 2001. Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460:105–11.
Baldauf S.L., Strassmann J.E. (2017) Dictyostelia. In: Archibald J. et al. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_14-1
Baumgartner, M., Eberhardt, S., De Jonckheere, J. F., & Stetter, K. O. (2009). Tetramitus thermacidophilus n. sp., an amoeboflagellate from acidic hot springs. Journal of Eukaryotic Microbiology 56:201–206. https://doi.org/10.1111/j.1550-7408.2009.00390.x
Beakes G.W., Thines M. (2016) Hyphochytriomycota and Oomycota. In: Archibald J. et al. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_26-1
Bennett R.M., Honda D., Beakes G.W., Thines M. (2017) Labyrinthulomycota. In: Archibald J. et al. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_25-1
Bernard, Catherine, Alastair G. B. Simpson & David J. Patterson (2000) Some free-living flagellates (protista) from anoxic habitats Ophelia 52(2):113-142. https://doi.org/10.1080/00785236.1999.10409422
Bigelow, D. M., Olsen, M. W., & Gilbertson, R. L. (2005). Labyrinthula terrestris sp. nov., a new pathogen of turf grass. Mycologia 97:185–190. https://doi.org/10.1080/15572536.2006.11832852
Bishop, A. (1935). Observations upon a “Trichomonas” from pond water. Parasitology 27:246–256. https://doi.org/10.1017/S0031182000015110
Boltovskoy D., Anderson O.R., Correa N.M. (2017) Radiolaria and Phaeodaria. In: Archibald J. et al. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_19-2
Borodina, A.S., Mylnikov, A.P., Janouškovec, J., Keeling, P.J. and Tikhonenkov, D.V., 2021. The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba stagnalis n. sp.(Vahlkampfiidae; Heterolobosea). Diversity, 13(9), p.433. https://doi.org/10.3390/d13090433
Bourland, W. A. & Struder-Kypke, M. C. 2010. Agolohymena aspidocauda nov. gen., nov. spec., a histophagous freshwater tetrahymenid ciliate in the family Deltopylidae (Ciliophora, Hymenostomatia), from Idaho (northwest USA): morphology, ontogenesis and molecular phylogeny. Eur. J. Protistol. 46:221–242. https://doi.org/10.1016/j.ejop.2010.04.003
Bradley, S.G. and Marciano-Cabral, F., 1996. Diversity of free-living ‘naked’amoeboid organisms. Journal of industrial microbiology and biotechnology, 17(3-4):314-321. https://doi.org/10.1007/BF01574706
Buaya, A. T., Ploch, S., Inaba, S., & Thines, M. (2019). Holocarpic oomycete parasitoids of red algae are not Olpidiopsis. Fungal systematics and evolution 4:21–31. https://doi.org/10.3114/fuse.2019.04.03
Bulman S., Neuhauser S. (2016) Phytomyxea. In: Archibald J. et al. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_24-1
Cavalier-Smith, T., Chao, E.E.-Y., 2006. Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J. Mol. Evol. 62, 388–420. https://doi.org/10.1007/s00239-004-0353-8
Cavalier-Smith, Thomas & Ema E. Chao. (2012) Oxnerella micra sp. n. (Oxnerellidae fam. n.), a Tiny Naked Centrohelid, and the Diversity and Evolution of Heliozoa. Protist 163(4):574-601. https://doi.org/10.1016/j.protis.2011.12.005
Cepicka, I., Hampl, V., Kulda, J., 2010. Critical Taxonomic Revision of Parabasalids with Description of one New Genus and three New Species. Protist 161:400–433. https://doi.org/10.1016/j.protis.2009.11.005
Cho, Anna, Denis V. Tikhonenkov, Elisabeth Hehenberger, Anna Karnkowska, Alexander P. Mylnikov, and Patrick J. Keeling. 2022. Monophyly of Diverse Bigyromonadea and their Impact on Phylogenomic Relationships Within Stramenopiles. Molecular Phylogenetics and Evolution 171: 107468. https://doi.org/10.1016/j.ympev.2022.107468
Clarke, A., 2014. The thermal limits to life on Earth. International Journal of Astrobiology 13, 141–154. https://doi.org/10.1017/S147355041300043
Cook, M.E., Graham, L.E., 2016. Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae, in: Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O. (Eds.), Handbook of the Protists. Springer International Publishing, Cham, pp. 1–20. https://doi.org/10.1007/978-3-319-32669-6_36-1
D’Amico, S., Collins, T., Marx, J.-C., Feller, G., Gerday, C., 2006. Psychrophilic microorganisms: challenges for life. EMBO Rep 7, 385–389. https://doi.org/10.1038/sj.embor.7400662
Darienko T, Rad-Menéndez C, Campbell CN, Pröschold T. 2021. Molecular Phylogeny of Unicellular Marine Coccoid Green Algae Revealed New Insights into the Systematics of the Ulvophyceae (Chlorophyta). Microorganisms 9(8):1586. https://doi.org/10.3390/microorganisms9081586
De Jonckheere, J.F., Baumgartner, M., Opperdoes, F.R. and Stetter, K.O., 2009. Marinamoeba thermophila, a new marine heterolobosean amoeba growing at 50° C. European journal of protistology, 45(3), pp.231-236. https://doi.org/10.1016/j.ejop.2009.01.001
Dee, J.M., Mollicone, M., Longcore, J.E., Roberson, R.W., Berbee, M.L., 2015. Cytology and molecular phylogenetics of Monoblepharidomycetes provide evidence for multiple independent origins of the hyphal habit in the Fungi. Mycologia 107, 710–728. https://doi.org/10.3852/14-275
Dewel, R. A., J. D. Joines, and J. J. Bond. 1985. A new chytridiomycete parasitizing the tardigrade Milnesium tardigradum. Canad. J. Bot. 63:1525- 1534. https://doi.org/10.1139/b85-211
Dykstra M, Olive L. 1975. An unusual sorocarp-producing Protist. Mycologia 67 (4):873–879. https://doi.org/10.1080/00275514.1975.12019815
Dykstra, M. J. Porter, D. 1984. Diplophrys marina, a New Scale-Forming Marine Protist with Labyrinthulid Affinities. Mycologia 76(4):626. https://doi.org/10.2307/3793219
Eikrem W. et al. (2017) Haptophyta. In: Archibald J. et al. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_38-2
Eliáš, M., Amaral, R., Fawley, K.P., Fawley, M.W., Němcová, Y., Neustupa, J., Přibyl, P., Santos, L.M.A., Ševčíková, T., 2017. Eustigmatophyceae, in: Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O. (Eds.), Handbook of the Protists. Springer International Publishing, Cham, pp. 1–39. <a
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California formed from the multiplicative product of the spring, summer, and winter HSI surfaces. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014) as well as additional telemetry location data from field sites in 2014. The dataset was then split according to calendar date into three seasons. Spring included telemetry locations (n = 14,058) from mid-March to June; summer included locations (n = 11,743) from July to mid-October; winter included locations (n = 4862) from November to March. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) and season using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. For each season, subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell. The three seasonal HSI rasters were then multiplied to create a composite HSI. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection. Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From the book: Estos informes están escritos en español por los estudiantes que se mencionan en cada informe, quienes son los autores. Cada uno de estos seis documentos contiene casos de estudio y muestra la implementación de la metodología del 'Proceso de Diseño de Intervención del Hábitat' (IDP) en cada uno de los 6 casos mencionados en el libro (Capítulo 2.5 y Capítulo 3.2) (Libro: La visión sistémica del ambiente construido).
Estos hacen parte de la Fase 2 Fundamentos Prácticos del Modelo del proyecto de investigación "Modelo Pedagógico para la Enseñanza del Diseño de Intervención del Hábitat en Programas de Educación Superior".
From the article: These reports are Spanish-written. Each of these six documents contains one of the case studies and shows the implementation of the 'Habitat Intervention Design Process' (IDP) methodology in each of the 6 case studies mentioned in the article "The Habitat Intervention Design Process -Part II: A Transdisciplinary Model in the Pedagogy of the Design of the Built Environment" published in The International Journal of Design Education in its 2023 version. Find it here: https://doi.org/10.18848/2325-128X/CGP/v17i02/155-195
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California during spring, which is a surrogate for habitat conditions during the sage-grouse breeding and nesting period. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Spring included telemetry locations (n = 14,058) from mid-March to June, and is a surrogate for habitat conditions during the sage-grouse breeding and nesting period. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection. Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California during the winter season, and is a surrogate for habitat conditions during periods of cold and snow. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Winter included telemetry locations (n = 4862) from November to March. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection . Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a full description of the methodology and results, please see the following article:
Demarquet, Q., Rapinel, S., Gore, O., Dufour, S., Hubert-Moy, L., 2024. Continuous change detection outperforms traditional post-classification change detection for long term monitoring of wetlands. International Journal of Applied Earth Observation and Geoinformation 133, 104142. https://doi.org/10.1016/j.jag.2024.104142
Points datasets are projected in WGS84 (EPSG:4326), and are provided in the open source GeoPackage format.
The first dataset (Dataset_1.gpkg) contains training and validation points for random forest classification of EUNIS habitats in the Poitevin Marsh. This dataset consists of 3360 training and 840 validation points (total: 4200).Fields description:
"ID": unique identifier
"CLASS": EUNIS first level habitat type, classified as following:
1: EUNIS habitat A
2: EUNIS habitat B
3: EUNIS habitat C1J5
4: EUNIS habitat C3
5: EUNIS habitat E
6: EUNIS habitat G
7: EUNIS habitat I
8: EUNIS habitat J
"DATE": Date associated with EUNIS habitat sample
"LON": Point longitude in decimal degrees
"LAT": Point latitude in decimal degrees
"TYPE": Either training ("train") or validation ("test") sample
The second dataset (Dataset_2.gpkg) contains points for the Olofsson correction method. This dataset consists of 326 points where the change classes are classified as following: -10 (wetland loss), 10 (wetland gain), 100 (stable existing wetland), and 200 (stable damaged wetland).Fields description:
"ID": unique identifier
"LON": Point longitude in decimal degrees
"LAT": Point latitude in decimal degrees
"REFERENCE": Change class reference
"CCDC": Change class obtained from the Continuous Change Detection and Classification approach
"PCCD": Change class obtained from the Post-Classification Change Detection approach
Supplementary layout files (Dataset_1.qml and Dataset_2.qml) support formatting of the points in QGIS software.
Maps are projected in WGS84 (EPSG:4326), and are provided in the GeoTiff format at 30m of spatial resolution.
Habitat maps are given for the two approaches in years 1984 and 2022:
CCDC: Continuous Change Detection and Classification (CCDC_HABITAT_1984.tif and CCDC_HABITAT_2022.tif)
PCCD: Traditional post-classification approach (PCCD_HABITAT_1984.tif and PCCD_HABITAT_2022.tif)
Supplementary layout files (CCDC_HABITAT_1984.qml, CCDC_HABITAT_2022.qml, PCCD_HABITAT_1984.qml, PCCD_HABITAT_2022.qml) support formatting of raster layers in QGIS software.
Maps are projected in WGS84 (EPSG:4326), and are provided in the GeoTiff format at 30m of spatial resolution. Raster values follow the classification scheme used in Dataset_2.
Change detection maps are given for the two approaches:
CCDC: Continuous Change Detection and Classification (CCDC_CHANGE_1984_2022.tif)
PCCD: Traditional post-classification approach (PCCD_CHANGE_1984_2022.tif)
Supplementary layer files (CCDC_CHANGE_1984_2022.qml and PCCD_CHANGE_1984_2022.qml) support formatting of the raster layers in QGIS software.
To get direct access to GEE scripts and assets, please follow those two links:
https://code.earthengine.google.com/?accept_repo=users/demarquetquentin/CCDC_Poitevin
https://code.earthengine.google.com/?asset=projects/ee-quen-dem/assets/CCDC_Poitevin
This raster dataset depicts phase 1 pinyon-juniper expansion , where shrubs and herbs are the dominant vegetation and conifers occupy greater than zero percent to ten percent, intersecting documented sage-grouse habitat management categories (Coates et al., 2016a, Coates et al., 2016b). These data support the following publication: K. Benjamin Gustafson, Peter S. Coates, Cali L. Roth, Michael P. Chenaille, Mark A. Ricca, Erika Sanchez-Chopitea, Michael L. Casazza, Using object-based image analysis to conduct high- resolution conifer extraction at regional spatial scales, International Journal of Applied Earth Observation and Geoinformation, Volume 73, December 2018, Pages 148-155, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2018.06.002. Cali L. Roth, Peter S. Coates, K. Benjamin Gustafson, Michael P. Chenaille, Mark A. Ricca, Erika Sanchez-Chopitea, and Michael L. Casazza, 2018. A customized framework for regional classification of conifers using automated feature extraction. Journal of Agricultural and Biological Science, in review. References: Coates, P.S., Casazza, M.L., Brussee B.E., Ricca, M.A., Gustafson, K.B., Sanchez-Chopitea, E., Mauch, K., Niell, L., Gardner, S., Espinosa, S., Delehanty, D.J. 2016a, Spatially explicit modeling of annual and seasonal habitat for greater sage-grouse (Centrocercus urophasianus) in Nevada and Northeastern California—an updated decision-support tool for management: U.S. Geological Survey Open-File Report 2016-1080, 160 p., http://doi.org/10.3133/ofr20161080. ISSN: 2331-1258 (online) Coates, P.S., Casazza, M.L., Brussee B.E., Ricca, M.A., Gustafson, K.B., Sanchez-Chopitea, E., Mauch, K., Niell, L., Gardner, S., Espinosa, S., and Delehanty, D.J., 2016b, Spatially explicit modeling of annual and seasonal habitat for greater sage-grouse (Centrocercus urophasianus) in Nevada and Northeastern California—an updated decision-support tool for management: U.S. Geological Survey data release, http://doi.org/10.5066/F7CC0XRV.
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada during the winter season, and is a surrogate for habitat conditions during periods of cold and snow. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry _location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Winter included telemetry locations (n = 4862) from November to March. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the winter season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Quantifying habitat use is important for understanding how animals meet their requirements for survival and provides information for conservation planning. Currently, assessments of range-wide habitat use that delimit species distributions are incomplete for many taxa. The Harpy Eagle (Harpia harpyja) is a raptor of conservation concern, widely distributed across Neotropical lowland forests, that currently faces threats from habitat loss and fragmentation. Here, we use penalized logistic regression to identify species-habitat associations and predict habitat suitability based on a new International Union for the Conservation of Nature range metric, termed Area of Habitat. From the species-habitat model, we performed a gap analysis to identify areas of high habitat suitability in regions with limited coverage in the Key Biodiversity Area (KBA) network. Range-wide habitat use indicated that Harpy Eagles prefer areas of 70-75% evergreen forest cover, low elevation, and high vegetation species richness. Conversely, Harpy Eagles avoid areas of >10% cultivated landcover and mosaic forest, and topographically complex areas. Our species-habitat model identified a large continuous area of potential habitat across the pan-Amazonia region, and a habitat corridor from the Chocó-Darién ecoregion of Colombia running north along the Caribbean coast of Central America. Little habitat was predicted across the Atlantic Forest biome, which is now severely degraded. The current KBA network covered 18% of medium to high Harpy Eagle habitat exceeding a target biodiversity area representation of 10%, based on species range size. Four major areas of high suitability habitat lacking coverage in the KBA network were identified in north and west Colombia, western Guyana, and north-west Brazil. We recommend these multiple gaps of habitat as new KBAs for strengthening the current KBA network. Modelled area of habitat estimates as described here are a useful tool for large-scale conservation planning and can be readily applied to many taxa. Methods Environmental data available from: EarthEnv: www.earthenv.org ENVIREM: http://envirem.github.io/#downloads Occurrence data available from: GBIF: https://doi.org/10.15468/dl.6ikhnj eBird: https://ebird.org/data/download/ebd Miranda et al. (2019) database: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216323#sec011
The folders within this zipfile contain data and results from the paper "Population Estimates of Trindade Petrel (Pterodroma arminjoniana) by Ensemble Nesting Habitat Modelling"Contents:1- Figures: figures from the paper2- Nests: points of the mapped nests;3- Tables: tables of model results and population estimates based on topographical variables;4- Topography: grid files of the topographical variables5- Vegetation: data of vegetation distributionAll spatial files are projected with:WGS 1984 World MercatorProjection: MercatorLinear unit: MeterGeographic Coordinate System: GCS WGS 1984Datum: D_WGS_1984Prime Meridian: GreenwichAngular Unit: Degree Supplement to: Krüger, Lucas (2018): Population estimates of Trindade Petrel (Pterodroma arminjoniana) by ensemble nesting habitat modelling. doi:10.19080/IJESNR.2018.10.555793, International Journal of Environmental Sciences & Natural Resources, 10(4), IJESNR.MS.ID.555793
In 2019, dye tracing investigations were conducted near Manitou Cave in Dekalb County, northeast Alabama. The purpose of the dye tracing was to delineate a recharge area for the stream in Manitou Cave, a 1.7-kilometer-long stream cave and the only known habitat for the Manitou Cavesnail (Antroribus breweri). In 2010, the U.S. Fish and Wildlife Service was petitioned by the Center for Biological Diversity to federally list the Manitou Cavesnail. However, before any listing or vulnerability designation can occur, more knowledge was required, specifically regarding potential threats to the snail. With regards to the Manitou Cavesnail, this required delineating a recharge for the stream in Manitou Cave in order to determine what potential threats might exist in the area draining to the cave. From June 2019 to December 2019 two rounds of dye injections, with four locations per round, were conducted to aid in the effort to delineate the recharge area for Manitou Cave. Following this work, a recharge area of 1.22 square kilometers (0.45 square miles) was delineated for the Manitou Cave stream from two positive traces, as well as utilizing information gathered from positive traces to other springs adjacent to Manitou Cave. References Crawford Hydrology Laboratory, 2019, Karst Groundwater Investigation Procedures, Western Kentucky University, Bowling Green, Kentucky, accessed 1/30/2020, https://dyetracing.com/documents/ . Goldscheider, N., Meiman, J., Pronk, M. and Smart, C., 2008. Tracer tests in karst hydrogeology and speleology. International Journal of speleology, 37(1), pp.27-40. Poulain, A., Rochez, G., Van Roy, J.P., Dewaide, L., Hallet, V. and De Sadelaer, G., 2017. A compact field fluorometer and its application to dye tracing in karst environments. Hydrogeology journal, 25(5), pp.1517-1524.
Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
License information was derived automatically
Journal of Agriculture and Environment International
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI, created using ArcGIS 10.2.2) values for Nevada during spring, which is a surrogate for habitat conditions during the sage-grouse breeding and nesting period. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Summer included telemetry locations (n = 14,058) from mid-March to June. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated using R Software (v 3.13) for each subregion and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014