The data contained in child items of this page were developed to support the Species Status Assessments conducted by the U.S. Fish & Wildlife Service and conservation planning for State, Federal, and non-government researchers, managers, landowners, and other partners for five focal herpetofauna species: gopher tortoise (Gopherus polyphemus), southern hognose snake (Heterodon simus), Florida pine snake (Pituophis melanoleucus mugitus), gopher frog (Lithobates capito), and striped newt (Notophthalmus perstriatus). These data were developed by the USGS Cooperative Fish & Wildlife Research Unit at the University of Georgia in collaboration with other partners. The three child items contain the following data: (1) responses of species experts, elicited from online surveys and in-person workshops, reflecting environmental, ecological, climatic, anthropogenic, or other attributes influential to each of the five focal species' status in the Southeast; (2) a spatial geodatabase of polygon feature layers representing habitat suitability classes (low, moderate, and high suitability) for each species, as estimated from range-wide habitat suitability models; and (3) a spatial geodatabase of rasters produced from the same habitat suitability models whose values range from 0 (least suitable habitat for the species) to 100 (most suitable). Collectively, the habitat suitability polygons and rasters extend across the range of these species in the Southeast US, including areas in Louisiana, Mississippi, Alabama, Florida, Georgia, South Carolina, and North Carolina. A full discussion of the compilation methodology and sources used to develop the habitat suitability data is available in the accompanying publication: Crawford, B.A., J.C. Maerz, & C.T. Moore. 2020. Expert-informed habitat suitability analysis for at-risk species assessment and conservation planning. Journal of Fish and Wildlife Management. in review.
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI, created using ArcGIS 10.2.2) values for Nevada during spring, which is a surrogate for habitat conditions during the sage-grouse breeding and nesting period. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Summer included telemetry locations (n = 14,058) from mid-March to June. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated using R Software (v 3.13) for each subregion and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Species-specific projected total habitat suitability index (HSI) and HSI's change or 'anomaly' under different carbon dioxide emission levels, including (A) total HSI for the 1970 to 2000 period; and changes in HSI under scenarios of (B) ~400 ppm and (C) ~565 ppm atmospheric carbon dioxide concentration in the high resolution Earth system model (GFDL CM2.6).
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Aim: Effective management decisions depend on knowledge of species distribution and habitat use. Maps generated from species distribution models are important in predicting previously unknown occurrences of protected species. However, if populations are seasonally dynamic or locally adapted, failing to consider population level differences could lead to erroneous determinations of occurrence probability and ineffective management. The study goal was to model the distribution of a species of special concern, Townsend’s big-eared bats (Corynorhinus townsendii), in California. We incorporate seasonal and spatial differences to estimate the distribution under current and future climate conditions. Methods: We built species distribution models using all records from statewide roost surveys and by subsetting data to seasonal colonies, representing different phenological stages, and to Environmental Protection Agency Level III Ecoregions to understand how environmental needs vary based on these factors. We projected species’ distribution for 2061-2080 in response to low and high emissions scenarios and calculated the expected range shifts. Results: The estimated distribution differed between the combined (full dataset) and phenologically-explicit models, while ecoregion-specific models were largely congruent with the combined model. Across the majority of models, precipitation was the most important variable predicting the presence of C. townsendii roosts. Under future climate scnearios, distribution of C. townsendii is expected to contract throughout the state, however suitable areas will expand within some ecoregions. Main conclusion: Comparison of phenologically-explicit models with combined models indicate the combined models better predict the extent of the known range of C. townsendii in California. However, life history-explicit models aid in understanding of different environmental needs and distribution of their major phenological stages. Differences between ecoregion-specific and statewide predictions of habitat contractions highlight the need to consider regional variation when forecasting species’ responses to climate change. These models can aid in directing seasonally explicit surveys and predicting regions most vulnerable under future climate conditions. Methods Study area and survey data The study area covers the U.S. state of California, which has steep environmental gradients that support an array of species (Dobrowski et al. 2011). Because California is ecologically diverse, with regions ranging from forested mountain ranges to deserts, we examined local environmental needs by modeling at both the state-wide and ecoregion scale, using U.S. Environmental Protection Agency (EPA) Level III ecoregion designations and there are thirteen Level III ecoregions in California (Table S1.1) (Griffith et al. 2016). Species occurrence data used in this study were from a statewide survey of C. townsendii in California conducted by Harris et al. (2019). Briefly, methods included field surveys from 2014-2017 following a modified bat survey protocol to create a stratified random sampling scheme. Corynorhinus townsendii presence at roost sites was based on visual bat sightings. From these survey efforts, we have visual occurrence data for 65 maternity roosts, 82 hibernation roosts (hibernacula), and 91 active-season non-maternity roosts (transition roosts) for a total of 238 occurrence records (Figure 1, Table S1.1). Ecogeographical factors We downloaded climatic variables from WorldClim 2.0 bioclimatic variables (Fick & Hijmans, 2017) at a resolution of 5 arcmin for broad-scale analysis and 30 arcsec for our ecoregion-specific analyses. To calculate elevation and slope, we used a digital elevation model (USGS 2022) in ArcGIS 10.8.1 (ESRI, 2006). The chosen set of environmental variables reflects knowledge on climatic conditions and habitat relevant to bat physiology, phenology, and life history (Rebelo et al. 2010, Razgour et al. 2011, Loeb and Winters 2013, Razgour 2015, Ancillotto et al. 2016). To trim the global environmental variables to the same extent (the state of California), we used the R package “raster” (Hijmans et al. 2022). We performed a correlation analysis on the raster layers using the “layerStats” function and removed variables with a Pearson’s coefficient > 0.7 (see Table 1 for final model variables). For future climate conditions, we selected three general circulation models (GCMs) based on previous species distribution models of temperate bat species (Razgour et al. 2019) [Hadley Centre Global Environment Model version 2 Earth Systems model (HadGEM3-GC31_LL; Webb, 2019), Institut Pierre-Simon Laplace Coupled Model 6th Assessment Low Resolution (IPSL-CM6A-LR; Boucher et al., 2018), and Max Planck Institute for Meteorology Earth System Model Low Resolution (MPI-ESM1-2-LR; Brovkin et al., 2019)] and two contrasting greenhouse concentration trajectories (Shared Socio-economic Pathways (SSPs): a steady decline pathway with CO2 concentrations of 360 ppmv (SSP1-2.6) and an increasing pathway with CO2 reaching around 2,000 ppmv (SSP5-8.5) (IPCC6). We modeled distribution for present conditions future (2061-2080) time periods. Because one aim of our study was to determine the consequences of changing climate, we changed only the climatic data when projecting future distributions, while keeping the other variables constant over time (elevation, slope). Species distribution modeling We generated distribution maps for total occurrences (maternity + hibernacula + transition, hereafter defined as “combined models”), maternity colonies , hibernacula, and transition roosts. To estimate the present and future habitat suitability for C. townsendii in California, we used the maximum entropy (MaxEnt) algorithm in the “dismo” R package (Hijmans et al. 2021) through the advanced computing resources provided by Texas A&M High Performance Research Computing. We chose MaxEnt to aid in the comparisons of state-wide and ecoregion-specific models as MaxEnt outperforms other approaches when using small datasets (as is the case in our ecoregion-specific models). We created 1,000 background points from random points in the environmental layers and performed a 5-fold cross validation approach, which divided the occurrence records into training (80%) and testing (20%) datasets. We assessed the performance of our models by measuring the area under the receiver operating characteristic curve (AUC; Hanley & McNeil, 1982), where values >0.5 indicate that the model is performing better than random, values 0.5-0.7 indicating poor performance, 0.7-0.9 moderate performance and values of 0.9-1 excellent performance (BCCVL, Hallgren et al., 2016). We also measured the maximum true skill statistic (TSS; Allouche, Tsoar, & Kadmon, 2006) to assess model performance. The maxTSS ranges from -1 to +1:values <0.4 indicate a model that performs no better than random, 0.4-0.55 indicates poor performance, (0.55-0.7) moderate performance, (0.7-0.85) good performance, and values >0.80 indicate excellent performance (Samadi et al. 2022). Final distribution maps were generated using all occurrence records for each region (rather than the training/testing subset), and the models were projected onto present and future climate conditions. Additionally, because the climatic conditions of the different ecoregions of California vary widely, we generated separate models for each ecoregion in an attempt to capture potential local effects of climate change. A general rule in species distribution modeling is that the occurrence points should be 10 times the number of predictors included in the model, meaning that we would need 50 occurrences in each ecoregion. One common way to overcome this limitation is through the ensemble of small models (ESMs) (Breiner et al. 2015., 2018; Virtanen et al. 2018; Scherrer et al. 2019; Song et al. 2019) included in ecospat R package (references). For our ESMs we implemented MaxEnt modeling, and the final ensemble model was created by averaging individual bivariate models by weighted performance (AUC > 0.5). We also used null model significance testing with to evaluate the performance of our ESMs (Raes and Ter Steege 2007). To perform null model testing we compared AUC scores from 100 null models using randomly generated presence locations equal to the number used in the developed distribution model. All ecoregion models outperformed the null expectation (p<0.002). Estimating range shifts For each of the three GCMs and each RCP scenario, we converted the probability distribution map into a binary map (0=unsuitable, 1=suitable) using the threshold that maximizes sensitivity and specificity (Liu et al. 2016). To create the final maps for each SSP scenario, we summed the three binary GCM layers and took a consensus approach, meaning climatically suitable areas were pixels where at least two of the three models predicted species presence (Araújo and New 2007, Piccioli Cappelli et al. 2021). We combined the future binary maps (fmap) and the present binary maps (pmap) following the formula fmap x 2 + pmap (from Huang et al., 2017) to produce maps with values of 0 (areas not suitable), 1 (areas that are suitable in the present but not the future), 2 (areas that are not suitable in the present but suitable in the future), and 3 (areas currently suitable that will remain suitable) using the raster calculator function in QGIS. We then calculated the total area of suitability, area of maintenance, area of expansion, and area of contraction for each binary model using the “BIOMOD_RangeSize” function in R package “biomod2” (Thuiller et al. 2021).
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of California's regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for California's wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR">https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.
The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protection's CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.
CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size.
The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR">https://www.wildlife.ca.gov/Data/CWHR).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Species-specific projected total habitat suitability index (HSI) and HSI's change or 'anomaly' under different carbon dioxide emission levels, including (A) total HSI for the 1970 to 2000 period; and changes in HSI under scenarios of (B) ~400 ppm and (C) ~565 ppm atmospheric carbon dioxide concentration in the high resolution Earth system model (GFDL CM2.6).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Species-specific projected total habitat suitability index (HSI) and HSI's change or 'anomaly' under different carbon dioxide emission levels, including (A) total HSI for the 1970 to 2000 period; and changes in HSI under scenarios of (B) ~400 ppm and (C) ~565 ppm atmospheric carbon dioxide concentration in the high resolution Earth system model (GFDL CM2.6).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of California's regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for California's wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage ( https://www.wildlife.ca.gov/Data/CWHR ). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protection's CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size.The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR ).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The habitat suitability map (HSM) of the Hesionura elongata community is a map describing the likelihood of presence of the Hesionura elongata community from 0 to 100% across the Belgian Part of the North Sea. The Hesionura elongata community is a macrobethic species assemblage characteristics of the area. The map is the visualization of a species distribution modelling exercise which consisted in modelling the likelihood of presence of the specific macrobenthic community based on the environmental parameters available. The modelling exercise was performed using a large dataset of macrobenthos samples.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
This dataset series shows the Maximum Habitat Suitability (MHS, also known as survivability) map of Corylus avellana (raster format: geotiff). The survivability map is provided for Europe (EU28 plus part of other countries within the spatial extent), computed using the FISE harmonised European dataset of taxa presence/absence (based on the integration and harmonisation of the datasets by European National Forestry Inventories; BioSoil; Forest Focus/Monitoring; EUFGIS; GeneticDiversity). The survivability is estimated as the maximum extension of habitat suitability by means of statistical multivariate similarity analysis (Relative Distance Similarity, RDS) of the bio-climatic conditions where the taxon is observed in Europe (RDS Maximum Habitat Suitability, RDS-MHS). Available years: 2006. The maps are available in the Forest Information System for Europe (FISE). FISE is run by the European Commission, Joint Research Centre. See the field Lineage for further information.
When using these data, please cite the relevant data sources. A suggested citation is included in the following:
Various authors, 2016. Corylus avellana in Europe: an outline on distribution, habitat, importance and threats. In: Online European Atlas of Forest Tree Species. FISE Comm. Publications Office of the European Union. pp. e015486+. (Under review: please, check the current status at: https://w3id.org/mtv/FISE-Comm/v01/e015486)
de Rigo, D., Caudullo, G., Houston Durrant, T., San-Miguel-Ayanz, J., 2016. The European Atlas of Forest Tree Species: modelling, data and information on forest tree species. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01aa69+. https://w3id.org/mtv/FISE-Comm/v01/e01aa69
-
This dataset series shows the Maximum Habitat Suitability (MHS, also known as survivability) map of Castanea sativa (raster format: geotiff). The survivability map is provided for Europe (EU28 plus part of other countries within the spatial extent), computed using the FISE harmonised European dataset of taxa presence/absence (based on the integration and harmonisation of the datasets by European National Forestry Inventories; BioSoil; Forest Focus/Monitoring; EUFGIS; GeneticDiversity). The survivability is estimated as the maximum extension of habitat suitability by means of statistical multivariate similarity analysis (Relative Distance Similarity, RDS) of the bio-climatic conditions where the taxon is observed in Europe (RDS Maximum Habitat Suitability, RDS-MHS). Available years: 2006. The maps are available in the Forest Information System for Europe (FISE). FISE is run by the European Commission, Joint Research Centre. See the field Lineage for further information.
When using these data, please cite the relevant data sources. A suggested citation is included in the following:
Various authors, 2016. Castanea sativa in Europe: an outline on distribution, habitat, importance and threats. In: Online European Atlas of Forest Tree Species. FISE Comm. Publications Office of the European Union. pp. e0125e0+. (Under review: please, check the current status at: https://w3id.org/mtv/FISE-Comm/v01/e0125e0)
de Rigo, D., Caudullo, G., Houston Durrant, T., San-Miguel-Ayanz, J., 2016. The European Atlas of Forest Tree Species: modelling, data and information on forest tree species. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01aa69+. https://w3id.org/mtv/FISE-Comm/v01/e01aa69
-
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
This dataset series shows the Maximum Habitat Suitability (MHS, also known as survivability) map of Pinus sylvestris (raster format: geotiff). The survivability map is provided for Europe (EU28 plus part of other countries within the spatial extent), computed using the FISE harmonised European dataset of taxa presence/absence (based on the integration and harmonisation of the datasets by European National Forestry Inventories; BioSoil; Forest Focus/Monitoring; EUFGIS; GeneticDiversity). The survivability is estimated as the maximum extension of habitat suitability by means of statistical multivariate similarity analysis (Relative Distance Similarity, RDS) of the bio-climatic conditions where the taxon is observed in Europe (RDS Maximum Habitat Suitability, RDS-MHS). Available years: 2006. The maps are available in the Forest Information System for Europe (FISE). FISE is run by the European Commission, Joint Research Centre. See the field Lineage for further information.
When using these data, please cite the relevant data sources. A suggested citation is included in the following:
Various authors, 2016. Pinus sylvestris in Europe: an outline on distribution, habitat, importance and threats. In: Online European Atlas of Forest Tree Species. FISE Comm. Publications Office of the European Union. pp. e016b94+. (Under review: please, check the current status at: https://w3id.org/mtv/FISE-Comm/v01/e016b94)
de Rigo, D., Caudullo, G., Houston Durrant, T., San-Miguel-Ayanz, J., 2016. The European Atlas of Forest Tree Species: modelling, data and information on forest tree species. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01aa69+. https://w3id.org/mtv/FISE-Comm/v01/e01aa69
-
The data contained in child items of this page were developed to support the Species Status Assessments conducted by the U.S. Fish & Wildlife Service and conservation planning for State, Federal, and non-government researchers, managers, landowners, and other partners for five focal herpetofauna species: gopher tortoise (Gopherus polyphemus), southern hognose snake (Heterodon simus), Florida pine snake (Pituophis melanoleucus mugitus), gopher frog (Lithobates capito), and striped newt (Notophthalmus perstriatus). These data were developed by the USGS Cooperative Fish & Wildlife Research Unit at the University of Georgia in collaboration with other partners. The three child items contain the following data: (1) responses of species experts, elicited from online surveys and in-person workshops, reflecting environmental, ecological, climatic, anthropogenic, or other attributes influential to each of the five focal species' status in the Southeast; (2) a spatial geodatabase of polygon feature layers representing habitat suitability classes (low, moderate, and high suitability) for each species, as estimated from range-wide habitat suitability models; and (3) a spatial geodatabase of rasters produced from the same habitat suitability models whose values range from 0 (least suitable habitat for the species) to 100 (most suitable). Collectively, the habitat suitability polygons and rasters extend across the range of these species in the Southeast US, including areas in Louisiana, Mississippi, Alabama, Florida, Georgia, South Carolina, and North Carolina. A full discussion of the compilation methodology and sources used to develop the habitat suitability data is available in the accompanying publication: Crawford, B.A., J.C. Maerz, & C.T. Moore. 2020. Expert-informed habitat suitability analysis for at-risk species assessment and conservation planning. Journal of Fish and Wildlife Management. in review.