By 2030, the middle-class population in Asia-Pacific is expected to increase from **** billion people in 2015 to **** billion people. In comparison, the middle-class population of sub-Saharan Africa is expected to increase from *** million in 2015 to *** million in 2030. Worldwide wealth While the middle-class has been on the rise, there is still a huge disparity in global wealth and income. The United States had the highest number of individuals belonging to the top one percent of wealth holders, and the value of global wealth is only expected to increase over the coming years. Around ** percent of the world’s population had assets valued at less than 10,000 U.S. dollars, while less than *** percent had assets of more than one million U.S. dollars. Asia had the highest percentage of investable assets in the world in 2018, whereas Oceania had the highest percentage of non-investable assets. The middle-class The middle class is the group of people whose income falls in the middle of the scale. China accounted for over half of the global population for middle-class wealth in 2017. In the United States, the debate about the middle class “disappearing” has been a popular topic due to the increase in wealth among the top billionaires in the nation. Due to this, there have been arguments to increase taxes on the rich to help support the middle class.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Earth. The dataset can be utilized to gain insights into gender-based income distribution within the Earth population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Haiti HT: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 18.200 % in 2012. Haiti HT: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 18.200 % from Dec 2012 (Median) to 2012, with 1 observations. The data reached an all-time high of 18.200 % in 2012 and a record low of 18.200 % in 2012. Haiti HT: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Haiti – Table HT.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
This statistic displays the percentage of carbon dioxide emissions emitted by the world population based on income levels. During this time those that were among the richest ** percent of the world population accounted for almost half of the world's carbon dioxide emissions, while the poorest ** percent were responsible for about ** percent of lifestyle consumption emissions.
Greenhouse gas emissions and economic inequality
Climate change and anthropogenic emissions have been closely linked to economic inequality. The poorest half of the global population, which accounts for about *** billion people, only accounts for *** percent of the total greenhouse gas emissions worldwide. However, many of these people reside in regions that are and will continue to be impacted the most by the negative effects caused by climate change, such as drought and food scarcity. On the other hand, the richest *** percent of the world generally have a carbon footprint that is ****** times greater than the poorest ** percent of the world. In 2014, the United States had a carbon footprint of **** acres per capita, compared to the global average of *** acres per capita.
Greenhouse gas emissions are considered one of the most important indicators of anthropogenic impacts on the environment. The Asia Pacific region accounted for **** billion metric tons of carbon dioxide (CO2) in 2014, comparatively, Africa accounted for just *** billion metric tons of CO2 emissions. In China, CO2 emissions have steadily risen over the last decade, accompanying their economic growth. In 2001, emissions in China grew from about *** billion metric tons to just over **** billion metric tons. As of 2015, China was the largest producer of CO2, accounting for over a quarter of the world’s emissions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estonia EE: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 8.700 % in 2021. This records a decrease from the previous number of 9.200 % for 2020. Estonia EE: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 10.600 % from Dec 2003 (Median) to 2021, with 19 observations. The data reached an all-time high of 13.500 % in 2003 and a record low of 8.700 % in 2021. Estonia EE: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Estonia – Table EE.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Black Earth. The dataset can be utilized to gain insights into gender-based income distribution within the Black Earth population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Black Earth town. The dataset can be utilized to gain insights into gender-based income distribution within the Black Earth town population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Blue Earth County. The dataset can be utilized to gain insights into gender-based income distribution within the Blue Earth County population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth County median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Globe. The dataset can be utilized to gain insights into gender-based income distribution within the Globe population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Iran IR: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 12.500 % in 2022. This records a decrease from the previous number of 13.200 % for 2021. Iran IR: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 12.700 % from Dec 1986 (Median) to 2022, with 19 observations. The data reached an all-time high of 20.600 % in 1986 and a record low of 10.500 % in 2013. Iran IR: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Iran – Table IR.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Black Earth, WI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Blue Earth City township. The dataset can be utilized to gain insights into gender-based income distribution within the Blue Earth City township population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth City township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 11.100 % in 2021. This records an increase from the previous number of 10.100 % for 2020. Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 8.900 % from Dec 1975 (Median) to 2021, with 27 observations. The data reached an all-time high of 11.100 % in 2021 and a record low of 5.200 % in 1987. Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
In the first quarter of 2025, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States was the country with the most billionaires in the world in 2025. Elon Musk, with a net worth of 342 billion U.S. dollars, was among the richest people in the United States in 2025. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Blue Earth, MN, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within White Earth. The dataset can be utilized to gain insights into gender-based income distribution within the White Earth population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth median household income by race. You can refer the same here
As of February 2025, 5.56 billion individuals worldwide were internet users, which amounted to 67.9 percent of the global population. Of this total, 5.24 billion, or 63.9 percent of the world's population, were social media users. Global internet usage Connecting billions of people worldwide, the internet is a core pillar of the modern information society. Northern Europe ranked first among worldwide regions by the share of the population using the internet in 20254. In The Netherlands, Norway and Saudi Arabia, 99 percent of the population used the internet as of February 2025. North Korea was at the opposite end of the spectrum, with virtually no internet usage penetration among the general population, ranking last worldwide. Eastern Asia was home to the largest number of online users worldwide – over 1.34 billion at the latest count. Southern Asia ranked second, with around 1.2 billion internet users. China, India, and the United States rank ahead of other countries worldwide by the number of internet users. Worldwide internet user demographics As of 2024, the share of female internet users worldwide was 65 percent, five percent less than that of men. Gender disparity in internet usage was bigger in African countries, with around a ten percent difference. Worldwide regions, like the Commonwealth of Independent States and Europe, showed a smaller usage gap between these two genders. As of 2024, global internet usage was higher among individuals between 15 and 24 years old across all regions, with young people in Europe representing the most significant usage penetration, 98 percent. In comparison, the worldwide average for the age group 15–24 years was 79 percent. The income level of the countries was also an essential factor for internet access, as 93 percent of the population of the countries with high income reportedly used the internet, as opposed to only 27 percent of the low-income markets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in White Earth. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In White Earth, the median income for all workers aged 15 years and older, regardless of work hours, was $63,333 for males and $23,594 for females.
These income figures highlight a substantial gender-based income gap in White Earth. Women, regardless of work hours, earn 37 cents for each dollar earned by men. This significant gender pay gap, approximately 63%, underscores concerning gender-based income inequality in the city of White Earth.
- Full-time workers, aged 15 years and older: In White Earth, for full-time, year-round workers aged 15 years and older, while the Census reported a median income of $80,536 for males, while data for females was unavailable due to an insufficient number of sample observations.As there was no available median income data for females, conducting a comprehensive assessment of gender-based pay disparity in White Earth was not feasible.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth median household income by race. You can refer the same here
Dataset consisting of inequality measures for 46 nation states and a global bibliography of all known household expenditure surveys covering the period roughly 1880-1960. Each entry notes when and where the survey was carried out and salient characteristics of the survey such as number of households, whether income and/or expenditure data are collected etc. These bibliographies are organised by six world regions and then by 118 nation states. For a sub-set of the most useful surveys we have estimated various inequality measures from the published data for 46 nation states, organised by world region.This project will calculate new estimates of world inequality in the period from the end of the nineteenth century until the 1960s, based on the results of household expenditure surveys. Our investigations have located a vast cache of household expenditure surveys for the period. Thus far, we have identified around 800 household surveys from around the world, carried out between the 1880s and 1960s, of which around half are of sufficient scope as to be potentially useful for the investigation of inequality. We will extract the reported demographic and expenditure data by income group from these reports and use them to estimate parameters of the income distribution. Using these estimates, we will investigate the changing nature of inequality within a number of key nation states, and also investigate the time path and geography of global inequality 1880-1960. In addition, we would use these data to estimate other indicators of living conditions, such as nutritional attainment, which may provide further insights into the impact of industrialisation on inequality. This project utilised the published reports of household expenditure surveys. These published reports are held at copyright libraries or national statistical offices and were typically part of the output of government departments (for example, the UK Board of Trade). We compiled our bibliographies through library searches and requests to various national statistical offices. Many of these reports are published in English, but a substantial number are only published in the language of the relevant nation state. The published household expenditure survey reports typically include summary tables of grouped data of income, expenditures, and household structure. All of these reports, and the data therein, are already in the public domain, and our bibliography provides details of when and where they were published. From these data we estimated a suite of inequality measures, using three different techniques. The inequality measures are: Gini coefficient, 90/10 percentile ratio, 90/50 percentile ratio, and the 50/10 percentile ratio. These inequality measures were estimated three ways: linear interpolation, the Beta-Lorenz method and a log normal density estimation. Not all published household expenditure survey reports contain sufficient data to estimate inequality measures. Our selection was based simply on whether the reports published the appropriate data. All that we required to estimate inequality were total household income or expenditure grouped by class (and the group average incomes/expenditures) and the total number of households and average household size.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chile CL: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 13.800 % in 2022. This records an increase from the previous number of 13.400 % for 2020. Chile CL: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 17.900 % from Dec 1987 (Median) to 2022, with 16 observations. The data reached an all-time high of 20.800 % in 1987 and a record low of 13.400 % in 2020. Chile CL: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chile – Table CL.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
By 2030, the middle-class population in Asia-Pacific is expected to increase from **** billion people in 2015 to **** billion people. In comparison, the middle-class population of sub-Saharan Africa is expected to increase from *** million in 2015 to *** million in 2030. Worldwide wealth While the middle-class has been on the rise, there is still a huge disparity in global wealth and income. The United States had the highest number of individuals belonging to the top one percent of wealth holders, and the value of global wealth is only expected to increase over the coming years. Around ** percent of the world’s population had assets valued at less than 10,000 U.S. dollars, while less than *** percent had assets of more than one million U.S. dollars. Asia had the highest percentage of investable assets in the world in 2018, whereas Oceania had the highest percentage of non-investable assets. The middle-class The middle class is the group of people whose income falls in the middle of the scale. China accounted for over half of the global population for middle-class wealth in 2017. In the United States, the debate about the middle class “disappearing” has been a popular topic due to the increase in wealth among the top billionaires in the nation. Due to this, there have been arguments to increase taxes on the rich to help support the middle class.