Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.
Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing U.K. life expectancy by year from 1950 to 2025.
Global life expectancy at birth has risen significantly since the mid-1900s, from roughly 46 years in 1950 to 73.2 years in 2023. Post-COVID-19 projections There was a drop of 1.7 years during the COVID-19 pandemic, between 2019 and 2021, however, figures resumed upon their previous trajectory the following year due to the implementation of vaccination campaigns and the lower severity of later strains of the virus. By the end of the century it is believed that global life expectancy from birth will reach 82 years, although growth will slow in the coming decades as many of the more-populous Asian countries reach demographic maturity. However, there is still expected to be a wide gap between various regions at the end of the 2100s, with the Europe and North America expected to have life expectancies around 90 years, whereas Sub-Saharan Africa is predicted to be in the low-70s. The Great Leap Forward While a decrease of one year during the COVID-19 pandemic may appear insignificant, this is the largest decline in life expectancy since the "Great Leap Forward" in China in 1958, which caused global life expectancy to fall by almost four years between by 1960. The "Great Leap Forward" was a series of modernizing reforms, which sought to rapidly transition China's agrarian economy into an industrial economy, but mismanagement led to tens of millions of deaths through famine and disease.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World life expectancy by year from 1950 to 2025.
The life expectancy for men aged 65 years in the U.S. has gradually increased since the 1960s. Now men in the United States aged 65 can expect to live 17 more years on average. Women aged 65 years can expect to live around 19.7 more years on average.
Life expectancy in the U.S.
As of 2021, the average life expectancy at birth in the United States was 76.33 years. Life expectancy in the U.S. had steadily increased for many years but has recently dropped slightly. Women consistently have a higher life expectancy than men but have also seen a slight decrease. As of 2019, a woman in the U.S. could be expected to live up to 79.3 years.
Leading causes of death
The leading causes of death in the United States include heart disease, cancer, unintentional injuries, chronic lower respiratory diseases and cerebrovascular diseases. However, heart disease and cancer account for around 38 percent of all deaths. Although heart disease and cancer are the leading causes of death for both men and women, there are slight variations in the leading causes of death. For example, unintentional injury and suicide account for a larger portion of deaths among men than they do among women.
A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>China life expectancy for 2024 was <strong>77.64</strong>, a <strong>0.22% increase</strong> from 2023.</li>
<li>China life expectancy for 2023 was <strong>77.47</strong>, a <strong>0.22% increase</strong> from 2022.</li>
<li>China life expectancy for 2022 was <strong>77.30</strong>, a <strong>0.22% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Life expectancy in the United Kingdom was below 39 years in the year 1765, and over the course of the next two and a half centuries, it is expected to have increased by more than double, to 81.1 by the year 2020. Although life expectancy has generally increased throughout the UK's history, there were several times where the rate deviated from its previous trajectory. These changes were the result of smallpox epidemics in the late eighteenth and early nineteenth centuries, new sanitary and medical advancements throughout time (such as compulsory vaccination), and the First world War and Spanish Flu epidemic in the 1910s.
In 2024, the average life expectancy for those born in more developed countries was 76 years for men and 82 years for women. On the other hand, the respective numbers for men and women born in the least developed countries were 64 and 69 years. Improved health care has lead to higher life expectancy Life expectancy is the measure of how long a person is expected to live. Life expectancy varies worldwide and involves many factors such as diet, gender, and environment. As medical care has improved over the years, life expectancy has increased worldwide. Introduction to health care such as vaccines has significantly improved the lives of millions of people worldwide. The average worldwide life expectancy at birth has steadily increased since 2007, but dropped during the COVID-19 pandemic in 2020 and 2021. Life expectancy worldwide More developed countries tend to have higher life expectancies, for a multitude of reasons. Health care infrastructure and quality of life tend to be higher in more developed countries, as is access to clean water and food. Africa was the continent that had the lowest life expectancy for both men and women in 2023, while Oceania had the highest for men and Europe and Oceania had the highest for women.
Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf
As of 2023, the countries with the highest life expectancy included Switzerland, Japan, and Spain. As of that time, a new-born child in Switzerland could expect to live an average of 84.2 years. Around the world, females consistently have a higher average life expectancy than males, with females in Europe expected to live an average of six years longer than males on this continent. Increases in life expectancy The overall average life expectancy in OECD countries increased by 11.3 years from 1970 to 2019. The countries that saw the largest increases included Turkey, India, and South Korea. The life expectancy at birth in Turkey increased an astonishing 24.4 years over this period. The countries with the lowest life expectancy worldwide as of 2022 were Chad, Lesotho, and Nigeria, where a newborn could be expected to live an average of 53 years. Life expectancy in the U.S. The life expectancy in the United States was 77.43 years as of 2022. Shockingly, the life expectancy in the United States has decreased in recent years, while it continues to increase in other similarly developed countries. The COVID-19 pandemic and increasing rates of suicide and drug overdose deaths from the opioid epidemic have been cited as reasons for this decrease.
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundSocioeconomic disparities in life expectancy are well-documented in various contexts, including Chile. However, there is a lack of research examining trends in life expectancy inequalities and lifespan variation over time. Addressing these gaps can provide crucial insights into the dynamics of health inequalities.MethodsThis study utilizes data from census records, population surveys, and death certificates to compare the life expectancy and the lifespan variation at age 26 of individuals according to their rank in the distribution of years of education within their own birth cohort. The analysis spans three periods (1991, 2002, and 2017) and focuses on two educational groups: individuals in the first (lowest) quintile and tenth (highest) decile of educational attainment. Changes in life expectancy are disaggregated by major causes of death to elucidate their contributions to overall trends.ResultsConsistent with existing literature, our findings confirm that individuals with lower education levels experience lower life expectancy and higher lifespan variation compared to their more educated counterparts. Notably, by 2017, life expectancy for individuals in the lowest quintile of education has caught up with that of the top decile in 1991, albeit with contrasting trends between genders. Among women, the gap has reduced, while it has increased for males. Moreover, lifespan variation decreased (increased) over time for individuals in the tenth decile (first quintile). The leading causes of death that explain the increase in life expectancy in women and men in the tenth decile as well as women in the first quintile are cardiovascular, cancer, respiratory and digestive diseases. In the case of males in the first quintile, few gains have been made in life expectancy resulting from cancer and a negative contribution is associated with digestive conditions.ConclusionsThis study underscores persistent socioeconomic disparities in life expectancy in Chile, emphasizing the importance of ongoing monitoring of health inequalities across different demographic segments. The gender-specific and educational gradient trends highlight areas for targeted interventions aimed at reducing health disparities and improving overall population health outcomes. Further research is warranted to delve into specific causes of death driving life expectancy differentials and to inform evidence-based policy interventions.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Life Expectancy at Birth, Total for the United States (SPDYNLE00INUSA) from 1960 to 2023 about life expectancy, life, birth, and USA.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
Life Expectancy Statistics: Life expectancy is the average number of years a person is expected to live based on current mortality rates in a specific population.
It is influenced by healthcare quality, lifestyle choices, economic conditions, genetics, environmental factors, and social determinants like education and public health policies.
Typically measured as life expectancy at birth, it reflects the average lifespan of a newborn. However, it can also be assessed for older ages, such as 65, to predict additional years of life.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
PLEASE if you use or like this dataset UPVOTE 👁️
This dataset offers a detailed historical record of global life expectancy, covering data from 1960 to the present. It is meticulously curated to enable deep analysis of trends and gender disparities in life expectancy worldwide.
Dataset Structure & Key Columns:
Country Code (🔤): Unique identifier for each country.
Country Name (🌍): Official name of the country.
Region (🌐): Broad geographical area (e.g., Asia, Europe, Africa).
Sub-Region (🗺️): More specific regional classification within the broader region.
Intermediate Region (🔍): Additional granular geographical grouping when applicable.
Year (📅): The specific year to which the data pertains.
Life Expectancy for Women (👩⚕️): Average years a woman is expected to live in that country and year.
Life Expectancy for Men (👨⚕️): Average years a man is expected to live in that country and year.
Context & Use Cases:
This dataset is a rich resource for exploring long-term trends in global health and demography. By comparing life expectancy data over decades, researchers can:
Analyze Time Series Trends: Forecast future changes in life expectancy and evaluate the impact of health interventions over time.
Study Gender Disparities: Investigate the differences between life expectancy for women and men, providing insights into social, economic, and healthcare factors influencing these trends.
Regional & Sub-Regional Analysis: Compare and contrast life expectancy across various regions and sub-regions to understand geographical disparities and their underlying causes.
Support Public Policy Research: Inform policymakers by linking life expectancy trends with public health policies, socioeconomic developments, and other key indicators.
Educational & Data Science Applications: Serve as a comprehensive teaching tool for courses on public health, global development, and data analysis, as well as for Kaggle competitions and projects.
With its detailed, structured format and broad temporal coverage, this dataset is ideal for anyone looking to gain a nuanced understanding of global health trends and to drive impactful analyses in public health, social sciences, and beyond.
Feel free to ask for further customizations or additional details as needed!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing India life expectancy by year from 1950 to 2025.
This dataset contains replication files for "The Association Between Income and Life Expectancy in the United States, 2001-2014" by Augustin Bergeron, Raj Chetty, David Cutler, Benjamin Scuderi, Michael Stepner, and Nicholas Turner. For more information, see https://opportunityinsights.org/paper/lifeexpectancy/. A summary of the related publication follows. How can we reduce socioeconomic disparities in health outcomes? Although it is well known that there are significant differences in health and longevity between income groups, debate remains about the magnitudes and determinants of these differences. We use new data from 1.4 billion anonymous earnings and mortality records to construct more precise estimates of the relationship between income and life expectancy at the national level than was feasible in prior work. We then construct new local area (county and metro area) estimates of life expectancy by income group and identify factors that are associated with higher levels of life expectancy for low-income individuals. Our findings show that disparities in life expectancy are not inevitable. There are cities throughout America — from New York to San Francisco to Birmingham, AL — where gaps in life expectancy are relatively small or are narrowing over time. Replicating these successes more broadly will require targeted local efforts, focusing on improving health behaviors among the poor in cities such as Las Vegas and Detroit. Our findings also imply that federal programs such as Social Security and Medicare are less redistributive than they might appear because low-income individuals obtain these benefits for significantly fewer years than high-income individuals, especially in cities like Detroit. Going forward, the challenge is to understand the mechanisms that lead to better health and longevity for low-income individuals in some parts of the U.S. To facilitate future research and monitor local progress, we have posted annual statistics on life expectancy by income group and geographic area (state, CZ, and county) at The Health Inequality Project website. Using these data, researchers will be able to study why certain places have high or improving levels of life expectancy and ultimately apply these lessons to reduce health disparities in other parts of the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Life Expectancy data was reported at 78.200 Year Old in 2021. This records an increase from the previous number of 77.930 Year Old for 2020. China Life Expectancy data is updated yearly, averaging 76.340 Year Old from Dec 1981 (Median) to 2021, with 13 observations. The data reached an all-time high of 78.200 Year Old in 2021 and a record low of 67.770 Year Old in 1981. China Life Expectancy data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Life Expectancy: By Region. According to the National Health Commission, from 2016 to 2017, the average life expectancy of residents per capita has increased from 76.5 to 76.7 years. For reference only. 根据国家卫生健康委员会,从2016年到2017年,居民人均预期寿命由76.5岁提高到76.7岁。以供參考。
Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.
Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.