5 datasets found
  1. Rate of U.S. COVID-19 cases as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Rate of U.S. COVID-19 cases as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109004/coronavirus-covid19-cases-rate-us-americans-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.

    From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.

    The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population

  2. Weekly COVID-19 County Level of Community Transmission Historical Changes -...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2024). Weekly COVID-19 County Level of Community Transmission Historical Changes - ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Weekly-COVID-19-County-Level-of-Community-Transmis/jgk8-6dpn
    Explore at:
    csv, tsv, json, application/rssxml, xml, application/rdfxmlAvailable download formats
    Dataset updated
    May 8, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.

    Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with historical case and percent positivity data for each county from January 22, 2020 (Weekly Historical Changes dataset) and a dataset with the levels as originally posted (Weekly Originally Posted dataset) since October 20, 2022. Please navigate to the Weekly Originally Posted dataset for the Community Transmission Levels published weekly on Thursdays.

    Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.

    CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).

    Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).

    The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers.

    This dataset is created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.

    Archived data CDC has archived two prior versions of these datasets. Both versions contain the same 7 data elements reflecting community transmission levels for all available counties and jurisdictions; however, the datasets updated daily. The archived datasets can be found here:

    Archived Originally Posted dataset

    Archived Historical Changes dataset

    Archived Data Notes:

    October 27, 2022: Due to a processing issue this dataset will not be posted this week. CDC is currently working to address the issue and will publish the data when able.

    November 10, 2022: As of 11/10/2022, this dataset will continue to incorporate historical updates made to case and percent positivity data; however, community transmission level will only be published in the corresponding Weekly COVID-19 County Level of Community Transmission as Originally Posted dataset (Weekly Originally Posted dataset).

    Note:

    October 20, 2022: Due to a data reporting error, the case rate for Philadelphia County, Pennsylvania is lower than expected in the COVID-19 Community Transmission Level data released on October 20, 2022. This could lead to the COVID-19 Community Transmission Level for Philadelphia County being underestimated; therefore, it should be interpreted with caution.

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 3, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Missouri counties being overestimated; therefore, they should be interpreted with caution.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 10, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Alabama counties being overestimated; therefore, they should be interpreted with caution.

    November 10, 2022: Per the request of the jurisdiction, cases among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases. 

    November 10, 2022: In the COVID-19 Community Transmission Level data released on November 10, 2022, multiple municipalities in Puerto Rico are reporting higher than expected increases in case counts. CDC is working with territory officials to verify the data submitted. 

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the COVID-19 Community Transmission Level data released on December 1, 2022. Therefore, the COVID-19 Community Transmission Levels may be underestimated and should be interpreted with caution. 

    December 22, 2022: Due to an internal revision process, case rates for some Tennessee counties may appear higher than expected in the December 22, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for some Tennessee counties may be overestimated and should be interpreted with caution.

    December 22, 2022: Due to reporting of a backlog of historic COVID-19 cases, case rates for some Louisiana counties will appear higher than expected in the December 22, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for some Louisiana counties may be overestimated and should be interpreted with caution.

    December 29, 2022: Due to technical difficulties, county data from Alabama could not be incorporated via standard practices. As a result, case and death metrics will be reported as 0 in the December 29, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for Alabama counties will be underestimated and should be interpreted with caution.

    January 5, 2023: Due to a reporting cadence issue, case rates for all Alabama counties will be calculated based on 14 days’ worth of case count data in the COVID-19 Community Transmission Level information released on January 5, 2023, instead of the customary 7 days’ worth of case count data. Therefore, the weekly case rates will be overestimated, which could affect counties’ COVID-19 Community Transmission Level classification and should be interpreted with caution.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case metrics will appear higher than expected in the January 5, 2023, weekly release. COVID-19 Community Transmission metrics may be overestimated and should be interpreted with caution.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case data will be reported as 0. As a result, case metrics will appear lower than expected in the January 12, 2023, weekly release. COVID-19 Community Transmission metrics may be underestimated and should be interpreted with caution. 

    January 13, 2023: Aggregate case data released for Los Angeles County, California for the week of December 22nd, 2022, and December 29th, 2022, have been corrected for a data processing error.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release. Therefore, COVID-19 Community Transmission metrics may be overestimated and should be interpreted with caution.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties

  3. g

    Transects for Historical Shorelines - Kauai, Maui, and Oahu, Hawaii |...

    • gimi9.com
    Updated Jan 25, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Transects for Historical Shorelines - Kauai, Maui, and Oahu, Hawaii | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_transects-for-historical-shorelines-kauai-maui-and-oahu-hawaii
    Explore at:
    Dataset updated
    Jan 25, 2016
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    O‘ahu, Kauai, Maui, Hawaii
    Description

    Combined layer of transect layers provided by Hawaii Coastal Geology Group for historical shoreline study. Includes shoreline change rates at the location of the transect. The "WLR" property records the shoreline change rate in meters per year (m/y) while "WLR_calcfeet" is in feet per year (ft/y). Negative values indicate a trend of beach erosion (loss) while positive values indicate a trend of beach accretion (growth). For further information, please see: http://www.soest.hawaii.edu/coasts/erosion/

  4. U

    Hawaiian Islands Ceratocystis rapid ohia death spatial analysis 2019

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucas Fortini; Lauren Kaiser; Lisa Keith; Jonathan Price; Flint Hughes; James Friday; James Jacobi (2024). Hawaiian Islands Ceratocystis rapid ohia death spatial analysis 2019 [Dataset]. http://doi.org/10.5066/P94ESGQB
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Lucas Fortini; Lauren Kaiser; Lisa Keith; Jonathan Price; Flint Hughes; James Friday; James Jacobi
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 2014 - Nov 30, 2018
    Area covered
    Hawaiian Islands, Hawaii
    Description

    Hawaiʹi’s most widespread native tree, ʹōhiʹa lehua (Metrosideros polymorpha), has been dying across large areas of Hawaiʹi Island mainly due to two fungal pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) that cause a disease collectively known as Rapid ʹŌhiʹa Death (ROD). Here we examine patterns of positive detections of C. lukuohia as it has been linked to the larger mortality events across Hawaiʹi Island. Our analysis compares the environmental range of C. lukuohia and its spread over time through the known climatic range and distribution of ʹōhiʹa. This data release consists of two rasters, one containing the projected suitability for C.lukuohia and another consisting of modeled presence/absence across the main Hawaiian Islands under current climatic conditions. This distribution model for C. lukuohia was generated using maxent using methods described in Fortini et. al 2019 (Forest Ecology and Management).
    Full citation is listed in the larger work section of th ...

  5. Data from: Hawaii Aging with HIV Cardiovascular Study, 2009-2014

    • icpsr.umich.edu
    Updated Mar 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Aging with HIV Cardiovascular Study, 2009-2014 [Dataset]. https://www.icpsr.umich.edu/web/NACDA/studies/36389
    Explore at:
    Dataset updated
    Mar 10, 2016
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Shikuma, Cecilia; Chow, Dominic
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36389/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36389/terms

    Time period covered
    Jan 2009 - Sep 2014
    Area covered
    Hawaii, United States
    Description

    This collection has not been processed by NACDA or ICPSR, and data are released in the format provided by the principal investigators. Please report any data errors or problems to user support, and we will work with you to resolve any data-related issues. Hawaii Aging with HIV Cardiovascular Study (HAHCS) enrolled HIV-infected volunteer adults age 40 and over, recruited from the state of Hawaii. A natural history longitudinal study, HAHCS followed a cohort of 150 HIV positive subjects for five years. The study is based on observations that, while HIV-infected individuals now live longer because of the availability of highly active antiretroviral therapy, these individuals may be at increased risk of cardiovascular (CV) morbidity and mortality. Rates of well-accepted traditional CV risk factors such as diabetes/hyperglycemia, body morphology changes and smoking are high in the HIV population. Furthermore, there is growing concern that HIV per se may also contribute to CV risk. HAHCS evaluated the cross-sectional and longitudinal impact of oxidative stress and inflammation on the development of subclinical atherosclerosis. Researchers assessed subclinical atherosclerosis functionally by brachial artery flow mediated vasodilatation (FMD) and structurally by intima-media thickness (IMT) as well as coronary artery calcium score obtained by dual source CT. Data include behavioral health indicators, medical history information, and medical test results. Demographic data include age, sex, and race.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Rate of U.S. COVID-19 cases as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109004/coronavirus-covid19-cases-rate-us-americans-by-state/
Organization logo

Rate of U.S. COVID-19 cases as of March 10, 2023, by state

Explore at:
9 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 15, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

As of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.

From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.

The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population

Search
Clear search
Close search
Google apps
Main menu