This database is part of the National Medical Information System (NMIS). The National Health Care Practitioner Database (NHCPD) supports Veterans Health Administration Privacy Act requirements by segregating personal information about health care practitioners such as name and social security number from patient information recorded in the National Patient Care Database for Ambulatory Care Reporting and Primary Care Management Module.
The Health Statistics and Health Research Database is Estonian largest set of health-related statistics and survey results administrated by National Institute for Health Development. Use of the database is free of charge.
The database consists of eight main areas divided into sub-areas. The data tables included in the sub-areas are assigned unique codes. The data tables presented in the database can be both viewed in the Internet environment, and downloaded using different file formats (.px, .xlsx, .csv, .json). You can download the detailed database user manual here (.pdf).
The database is constantly updated with new data. Dates of updating the existing data tables and adding new data are provided in the release calendar. The date of the last update to each table is provided after the title of the table in the list of data tables.
A contact person for each sub-area is provided under the "Definitions and Methodology" link of each sub-area, so you can ask additional information about the data published in the database. Contact this person for any further questions and data requests.
Read more about publication of health statistics by National Institute for Health Development in Health Statistics Dissemination Principles.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Open Database of Healthcare Facilities (ODHF) is a collection of open data containing the names, types, and locations of health facilities across Canada. It is released under the Open Government License - Canada. The ODHF compiles open, publicly available, and directly-provided data on health facilities across Canada. Data sources include regional health authorities, provincial, territorial and municipal governments, and public health and professional healthcare bodies. This database aims to provide enhanced access to a harmonized listing of health facilities across Canada by making them available as open data. This database is a component of the Linkable Open Data Environment (LODE).
Statistical reports from all medical institutions in Latvia according to their medical activity (ambulatory and inpatient work, medical staff, radiology, dentistry, abortions, medical tourism, emergency medical assistance, etc.)
The Agency for Healthcare Research and Quality (AHRQ) created SyH-DR from eligibility and claims files for Medicare, Medicaid, and commercial insurance plans in calendar year 2016. SyH-DR contains data from a nationally representative sample of insured individuals for the 2016 calendar year. SyH-DR uses synthetic data elements at the claim level to resemble the marginal distribution of the original data elements. SyH-DR person-level data elements are not synthetic, but identifying information is aggregated or masked.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIncreasingly, researchers need to demonstrate the impact of their research to their sponsors, funders, and fellow academics. However, the most appropriate way of measuring the impact of healthcare research is subject to debate. We aimed to identify the existing methodological frameworks used to measure healthcare research impact and to summarise the common themes and metrics in an impact matrix.Methods and findingsTwo independent investigators systematically searched the Medical Literature Analysis and Retrieval System Online (MEDLINE), the Excerpta Medica Database (EMBASE), the Cumulative Index to Nursing and Allied Health Literature (CINAHL+), the Health Management Information Consortium, and the Journal of Research Evaluation from inception until May 2017 for publications that presented a methodological framework for research impact. We then summarised the common concepts and themes across methodological frameworks and identified the metrics used to evaluate differing forms of impact. Twenty-four unique methodological frameworks were identified, addressing 5 broad categories of impact: (1) ‘primary research-related impact’, (2) ‘influence on policy making’, (3) ‘health and health systems impact’, (4) ‘health-related and societal impact’, and (5) ‘broader economic impact’. These categories were subdivided into 16 common impact subgroups. Authors of the included publications proposed 80 different metrics aimed at measuring impact in these areas. The main limitation of the study was the potential exclusion of relevant articles, as a consequence of the poor indexing of the databases searched.ConclusionsThe measurement of research impact is an essential exercise to help direct the allocation of limited research resources, to maximise research benefit, and to help minimise research waste. This review provides a collective summary of existing methodological frameworks for research impact, which funders may use to inform the measurement of research impact and researchers may use to inform study design decisions aimed at maximising the short-, medium-, and long-term impact of their research.
ONC uses the SK&A Office-based Provider Database to calculate the counts of medical doctors, doctors of osteopathy, nurse practitioners, and physician assistants at the state and count level from 2011 through 2013. These counts are grouped as a total, as well as segmented by each provider type and separately as counts of primary care providers.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Healthcare Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain point geographic files of healthcare organizations, providers, and hospitals and an boundary file of Primary Care Service Areas.
The State Inpatient Databases (SID) are part of the family of databases and software tools developed for the Healthcare Cost and Utilization Project (HCUP). The SID are a set of hospital databases containing the universe of the inpatient discharge abstracts from participating States, translated into a uniform format to facilitate multi-State comparisons and analyses. The SID can be used to investigate questions and identify trends unique to one state, to compare data from two or more states, and to conduct market area research or small area variation analyses. Data may not be available for all states across all years.
The Database of Hospital beds’ Utilisation is updated on the basis of information provided by inpatient treatment facilities. Inpatient information shall be provided on a monthly basis using form No. 016/u “Patient Movement and Bed Fund Accounting Summary Inpatient”.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There is a strong and continuously growing interest in using large electronic healthcare databases to study health outcomes and the effects of pharmaceutical products. However, concerns regarding disease misclassification (i.e. classification errors of the disease status) and its impact on the study results are legitimate. Validation is therefore increasingly recognized as an essential component of database research. In this work, we elucidate the interrelations between the true prevalence of a disease in a database population (i.e. prevalence assuming no disease misclassification), the observed prevalence subject to disease misclassification, and the most common validity indices: sensitivity, specificity, positive and negative predictive value. Based on this, we obtained analytical expressions to derive all the validity indices and true prevalence from the observed prevalence and any combination of two other parameters. The analytical expressions can be used for various purposes. Most notably, they can be used to obtain an estimate of the observed prevalence adjusted for outcome misclassification from any combination of two validity indices and to derive validity indices from each other which would otherwise be difficult to obtain. To allow researchers to easily use the analytical expressions, we additionally developed a user-friendly and freely available web-application.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Register of Health Care Providers is the basic national database
on health care system, medical staff and other health care employees. It is intended for planning and monitoring the public health service network, planning and monitoring the movement of health personnel, and implementation of health care and health insurance systems. It serves as a register of individual groups of medical staff, separately
doctors, dentists, pharmacists and private health professionals.
Stop relying on outdated and inaccurate databases and lists and let Wiza be your source of truth for all plastics outreach.
Why we're different: Healthcare Professionals are not easy to get in contact with - Wiza is not a static database that gets refreshed on occasion. Every datapoint is sourced and verified the moment that you receive the information. We verify deliverability of every single email ahead of providing the data, and we ensure that each person in your dataset has 100% data accuracy by leveraging Linkedin Data sourced through their live Linkedin profile.
Key Features:
Comprehensive Data Coverage: Stop contacting the same healthcare professionals as everyone else. Wiza's search fund Data is sourced live, not stored in a limited database. We source the contact data in real-time based on everyone who is currently a plastic surgeon on Linkedin at the time of request.
High-Quality, Accurate Data: Wiza ensures accuracy of all datapoints by taking a few key steps that other data providers fail to take: (1) Every email is SMTP verified ahead of delivery, ensuring they will not bounce (2) Every person's Linkedin profile is checked live to ensure we have 100% job title, company, location, etc. accuracy, ahead of providing any data (3) Phone numbers are constantly being verified with AI to ensure accuracy
Linkedin Data: Wiza is able to provide Linkedin Data points, sourced live from each person's Linkedin profile, including Subtitle, Bio, Job Title, Job Description, Skills, Languages, Certifications, Work History, Education, Open to Work, Premium Status, and more!
Personal Data: Wiza has access to industry leading volumes of B2C Contact Data, meaning you can find gmail/yahoo/hotmail email addresses, and mobile phone number data to contact your plastic surgeons.
Our highly-targeted consumer healthcare database includes:
🗸 Name 🗸 Postal Address, Email Address, Telephone Number 🗸 Age, Gender 🗸 Most likely to ask a Doctor About an Advertised Prescription Medicine 🗸 Most likely looked for Medical Information on the Web 🗸 Most Likely to Prefer Brand Name Medicines 🗸 Most Likely to Buy Prescriptions through the Mail
The dataset is available for purchase by US region: 🗸 New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont) 🗸 Middle Atlantic (New Jersey, New York, and Pennsylvania) 🗸 East North Central (Illinois, Indiana, Michigan, Ohio, and Wisconsin) 🗸 West North Central (Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota) 🗸 South Atlantic (Delaware; Florida; Georgia; Maryland; North Carolina; South Carolina; Virginia; Washington, D.C. and West Virginia) 🗸 East South Central (Alabama, Kentucky, Mississippi, and Tennessee) 🗸 West South Central (Arkansas, Louisiana, Oklahoma, and Texas) 🗸 Mountain (Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming) 🗸 Pacific (Alaska, California, Hawaii, Oregon, and Washington)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: In Brazil, studies that map electronic healthcare databases in order to assess their suitability for use in pharmacoepidemiologic research are lacking. We aimed to identify, catalogue, and characterize Brazilian data sources for Drug Utilization Research (DUR).Methods: The present study is part of the project entitled, “Publicly Available Data Sources for Drug Utilization Research in Latin American (LatAm) Countries.” A network of Brazilian health experts was assembled to map secondary administrative data from healthcare organizations that might provide information related to medication use. A multi-phase approach including internet search of institutional government websites, traditional bibliographic databases, and experts’ input was used for mapping the data sources. The reviewers searched, screened and selected the data sources independently; disagreements were resolved by consensus. Data sources were grouped into the following categories: 1) automated databases; 2) Electronic Medical Records (EMR); 3) national surveys or datasets; 4) adverse event reporting systems; and 5) others. Each data source was characterized by accessibility, geographic granularity, setting, type of data (aggregate or individual-level), and years of coverage. We also searched for publications related to each data source.Results: A total of 62 data sources were identified and screened; 38 met the eligibility criteria for inclusion and were fully characterized. We grouped 23 (60%) as automated databases, four (11%) as adverse event reporting systems, four (11%) as EMRs, three (8%) as national surveys or datasets, and four (11%) as other types. Eighteen (47%) were classified as publicly and conveniently accessible online; providing information at national level. Most of them offered more than 5 years of comprehensive data coverage, and presented data at both the individual and aggregated levels. No information about population coverage was found. Drug coding is not uniform; each data source has its own coding system, depending on the purpose of the data. At least one scientific publication was found for each publicly available data source.Conclusions: There are several types of data sources for DUR in Brazil, but a uniform system for drug classification and data quality evaluation does not exist. The extent of population covered by year is unknown. Our comprehensive and structured inventory reveals a need for full characterization of these data sources.
An integral part of delivering high-quality healthcare is understanding the social determinants of health (SDOH) of patients and of communities in which healthcare is provided. SDOH are defined by the World Health Organization as the conditions in which people are born, grow, live, work, and age.
SDOH, although experienced by individuals, exist at the community level. Healthcare systems that learn about the communities in which their patients live can adapt their services to meet the communities’ specific needs. This, in turn, can help patients and community members overcome obstacles to achieving and maintaining good health.
Additional information about SDOH is available on the Agency for Healthcare Research and Quality (AHRQ) SDOH website (https://www.ahrq.gov/sdoh/about.html).
The National (Nationwide) Inpatient Sample (NIS) is part of a family of databases and software tools developed for the Healthcare Cost and Utilization Project (HCUP). The NIS is the largest publicly available all-payer inpatient healthcare database designed to produce U.S. regional and national estimates of inpatient utilization, access, cost, quality, and outcomes. Unweighted, it contains data from around 7 million hospital stays each year. Weighted, it estimates around 35 million hospitalizations nationally. Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality (AHRQ), HCUP data inform decision making at the national, State, and community levels.
The National (Nationwide) Inpatient Sample (NIS) is part of a family of databases and software tools developed for the Healthcare Cost and Utilization Project (HCUP). The NIS is the largest publicly available all-payer inpatient healthcare database designed to produce U.S. regional and national estimates of inpatient utilization, access, cost, quality, and outcomes. Unweighted, it contains data from around 7 million hospital stays each year. Weighted, it estimates around 35 million hospitalizations nationally. Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality (AHRQ), HCUP data inform decision making at the national, State, and community levels.
The HCUP Summary Trend Tables include monthly information on hospital utilization derived from the HCUP State Inpatient Databases (SID) and HCUP State Emergency Department Databases (SEDD). Information on emergency department (ED) utilization is dependent on availability of HCUP data; not all HCUP Partners participate in the SEDD.
The HCUP Summary Trend Tables include downloadable Microsoft® Excel tables with information on the following topics:
In a historical and developmental sense, the former one-year reporting on employees employed in healthcare grew during 1990/91. in the continuous collection and monitoring of data through the state Register of Health Professionals. The department maintains data on all healthcare workers and healthcare associates, and on administrative and technical staff for now only numerically, according to the number of permanent employees at the end of the year. In the future, it is intended to register employees who are not health-oriented and work in healthcare, and healthcare professionals who work outside the healthcare system can also be registered.
Data on health workers and health care associates are required to be submitted not only by state and county-owned health institutions, but also by all private institutions, health workers who independently perform private practice, as well as trading companies for the performance of health activities, regardless of whether they have a contract with the Croatian Institute for health insurance.
All employees are assigned a registration number (code) upon entry into the Registry's database on the day of employment. The connection with the Croatian Health Insurance Institute exists through the use of the registration number when registering, recognizing within the CEZIH system, as well as when registering prescriptions, referrals and other documents of the HZZO. that is, in monitoring and building the health information system.
As an integral part of the same, relational databases also include data on health organizational units, representing the Register of Health Institutions. Namely, in addition to data on employees, the Registry, based on the decision of the Ministry of Health on work authorization, also records basic data on health institutions, surgeries and all other types of independent health units, regardless of the contract with the Croatian Health Insurance Institute or the type of ownership. As for employees, received data on the opening, closing, change of name, address, type and activity of the health organizational unit is also updated daily.
Thus, the organizational structure of healthcare is monitored through the database, according to levels of healthcare, types of healthcare institutions, healthcare activities performed by institutions, divisions with regard to the type of ownership as well as territorial distribution.
In addition to the importance of data on human potential and space, that is, the units where health care is provided, medical equipment is also an important factor in management and planning. One part of the department's work is related to the collection of data on this material resource. In the near future, it is planned to form a Register of Medically Expensive Equipment, which would be technologically and functionally connected with the existing two registers into a whole register of resources in healthcare.
Also, the statistical research aims to include those entities that are not part of the health system, and in which health workers work, i.e. health activities are performed, such as long-term care homes, which means expanding the existing data of the Register of Health Institutions.
In the last decade, a new IT application of the Registry of Health Care Professionals was created and an even better connection with the Croatian Institute for Health Insurance, for example through the use of the so-called population register or the register of insured persons. The register continues to be the source of data and the authorized institution for the delivery of data to international bodies such as the WHO and the joint WHO/Eurostat/OECD database. Within the scope of the Department's activities are also activities in international initiatives and programs, and with regard to the problems of statistical monitoring, shortages and planning of health workers. Since 2012, we have been involved in the implementation of the "Global Code of Practice on International Recruitment of Health Personnel", a recommendation that is also an instrument in the regulation, improvement and establishment of standards in the migration process.
In the same year, the Department was involved in the work in the part of the program platform on the topic of Joint Action on European Health Workforce Planning and Forecasting.
Also, during the past years, there has been cooperation on the topic of health workers within the framework of the South-eastern Europe Health Network (SEEHN).
This database is part of the National Medical Information System (NMIS). The National Health Care Practitioner Database (NHCPD) supports Veterans Health Administration Privacy Act requirements by segregating personal information about health care practitioners such as name and social security number from patient information recorded in the National Patient Care Database for Ambulatory Care Reporting and Primary Care Management Module.