In 2023, Singapore dominated the ranking of the world's health and health systems, followed by Japan and South Korea. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The health and health system index score of the top ten countries with the best healthcare system in the world ranged between 82 and 86.9, measured on a scale of zero to 100.
Global Health Security Index Numerous health and health system indexes have been developed to assess various attributes and aspects of a nation's healthcare system. One such measure is the Global Health Security (GHS) index. This index evaluates the ability of 195 nations to identify, assess, and mitigate biological hazards in addition to political and socioeconomic concerns, the quality of their healthcare systems, and their compliance with international finance and standards. In 2021, the United States was ranked at the top of the GHS index, but due to multiple reasons, the U.S. government failed to effectively manage the COVID-19 pandemic. The GHS Index evaluates capability and identifies preparation gaps; nevertheless, it cannot predict a nation's resource allocation in case of a public health emergency.
Universal Health Coverage Index Another health index that is used globally by the members of the United Nations (UN) is the universal health care (UHC) service coverage index. The UHC index monitors the country's progress related to the sustainable developmental goal (SDG) number three. The UHC service coverage index tracks 14 indicators related to reproductive, maternal, newborn, and child health, infectious diseases, non-communicable diseases, service capacity, and access to care. The main target of universal health coverage is to ensure that no one is denied access to essential medical services due to financial hardships. In 2021, the UHC index scores ranged from as low as 21 to a high score of 91 across 194 countries.
The healthcare ranking reflects the quality of health care and access to health services in different countries. The assessment includes various factors such as life expectancy, access to medical services, healthcare funding, and technologies.
In 2023, the health care system in Finland ranked first with a care index score of ****, followed by Belgium and Japan. Care systems index score is measured using multiple indicators from various public databases, it evaluates the capacity of a health system to treat and cure diseases and illnesses, once it is detected in the population This statistic shows the care systems ranking of countries worldwide in 2023, by their index score.
In 2023, Norway ranked first with a health index score of 83, followed by Iceland and Sweden. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The statistic shows the health and health systems ranking of European countries in 2023, by their health index score.
According to a 2021 health care systems ranking among selected high-income countries, the United States came last in the overall ranking of its health care system performance. The overall ranking was based on five performance categories, including access to care, care process, administrative efficiency, equity, and health care outcomes. For the category administrative efficiency, which measures the amount of paperwork for providers and patients in the health system, the U.S. was ranked last, while Norway took first place. This could be because the health system in the U.S. is a multi-payer system, while Norway has a single-payer system, which most likely simplifies documentation and billing tasks. This statistic present the health care administrative efficiency rankings of the United States' health care system compared to ten other high-income countries in 2021.
This dataset contains internationally comparable indicators of the effectiveness of primary care for country members of OECD (The Organization for Economic Co-operation and Development) and for countries in accession negotiations with OECD. The indicators values cover the period 2000-2015.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 45 countries was 44.61 index points. The highest value was in South Africa: 76.27 index points and the lowest value was in Sudan: 17.84 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
This data package contains a wide spectrum of internationally comparable indicators that cover population demographics and population health status (including natality, mortality, quality of life and morbidity) and major determinants of health like healthcare system and services and behavioral health risk factors. It must be mentioned that OECD available data cover predominantly two major areas: population health status and healthcare services (resources and utilization).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spain: Healthcare price index, world average = 100: The latest value from 2021 is 122.81 index points, an increase from 121.63 index points in 2017. In comparison, the world average is 67.78 index points, based on data from 165 countries. Historically, the average for Spain from 2017 to 2021 is 122.22 index points. The minimum value, 121.63 index points, was reached in 2017 while the maximum of 122.81 index points was recorded in 2021.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Harmonized Index of Consumer Prices: Health for Euro Area (19 Countries) (CP0600EZ19M086NEST) from Jan 1996 to Jun 2025 about health, harmonized, Euro Area, Europe, CPI, price index, indexes, and price.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundOne of the greatest obstacles facing efforts to address quality of care in low and middle income countries is the absence of relevant and reliable data. This article proposes a methodology for creating a single “Quality Index” (QI) representing quality of maternal and neonatal health care based upon data collected as part of the Demographic and Health Survey (DHS) program.MethodsUsing the 2012 Indonesian Demographic and Health Survey dataset, indicators of quality of care were identified based on the recommended guidelines outlined in the WHO Integrated Management of Pregnancy and Childbirth. Two sets of indicators were created; one set only including indicators available in the standard DHS questionnaire and the other including all indicators identified in the Indonesian dataset. For each indicator set composite indices were created using Principal Components Analysis and a modified form of Equal Weighting. These indices were tested for internal coherence and robustness, as well as their comparability with each other. Finally a single QI was chosen to explore the variation in index scores across a number of known equity markers in Indonesia including wealth, urban rural status and geographical region.ResultsThe process of creating quality indexes from standard DHS data was proven to be feasible, and initial results from Indonesia indicate particular disparities in the quality of care received by the poor as well as those living in outlying regions.ConclusionsThe QI represents an important step forward in efforts to understand, measure and improve quality of MNCH care in developing countries.
Health indicators are quantifiable characteristics of a population which researchers use as supporting evidence for describing the health of a population. The researchers use a survey methodology to gather information about certain people, use statistics in an attempt to generalize the information collected to the entire population, then use the statistical analysis to make a statement about the health of a population. Health indicators are often used by governments to guide health care policy.
The objective of the Health Account operation is to calculate the expenditure made on health by all the institutional sectors in the Basque Country, its means of funding and its investment in the infrastructures upheld by this expenditure; information sources are administrative data from the Department of Health and the operations: Private Healthcare Statistics and Household Expenditure Statistics, among others. Another objective is to produce the main macro-figures of the healthcare sector, following the main methodologies of the System of Health Accounts of the OECD, its impact on the economy of the Basque Country to be analysed and international comparisons to be made.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong: Healthcare price index, world average = 100: The latest value from 2021 is 137.11 index points, a decline from 138.09 index points in 2017. In comparison, the world average is 67.78 index points, based on data from 165 countries. Historically, the average for Hong Kong from 2017 to 2021 is 137.6 index points. The minimum value, 137.11 index points, was reached in 2021 while the maximum of 138.09 index points was recorded in 2017.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 181 countries was 1402.97 U.S. dollars. The highest value was in the USA: 12012.24 U.S. dollars and the lowest value was in Madagascar: 17.64 U.S. dollars. The indicator is available from 2000 to 2022. Below is a chart for all countries where data are available.
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Cost of Living - Country Rankings Dataset
The "Cost of Living - Country Rankings Dataset" provides comprehensive information on the cost of living in various countries around the world. Understanding the cost of living is crucial for individuals, businesses, and policymakers alike, as it impacts decisions related to travel, relocation, investment, and economic analysis. This dataset is intended to serve as a valuable resource for researchers, data analysts, and anyone interested in exploring and comparing the cost of living across different nations.
This dataset comprises four primary columns:
1. Countries: This column contains the names of various countries included in the dataset. Each country is identified by its official name.
2. Cost of Living: The "Cost of Living" column represents the cost of living index or score for each country. This index is typically calculated by considering various factors, such as housing, food, transportation, healthcare, and other essential expenses. A higher index value indicates a higher cost of living in that particular country, while a lower value suggests a more affordable cost of living.
3. 2017 Global Rank: This column provides the global ranking of each country's cost of living in the year 2017. The ranking is based on the cost of living index mentioned earlier. A lower rank indicates a lower cost of living relative to other countries, while a higher rank suggests a higher cost of living position.
4. Available Data: The "Available Data" column indicates whether or not data for a specific country and year is available.
This dataset is designed to support various data analysis and visualization tasks. Users can explore trends in the cost of living, identify countries with high or low cost of living, and analyze how rankings have changed over time. Researchers can use this dataset to conduct in-depth studies on the factors influencing the cost of living in different regions and the economic implications of such variations.
Please note that the dataset includes information for the year 2017, and users are encouraged to consider this when interpreting the data, as economic conditions and the cost of living may have changed since then. Additionally, this dataset aims to provide a snapshot of cost of living rankings for countries in 2017 and may not cover every country in the world.
Link: https://www.theglobaleconomy.com/rankings/cost_of_living_wb/
Disclaimer: The accuracy and completeness of the data provided in this dataset are subject to the source from which it was obtained. Users are advised to cross-reference this data with authoritative sources and exercise discretion when making decisions based on it. The dataset creator and Kaggle assume no responsibility for any actions taken based on the information provided herein.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 10 countries was 46.11 index points. The highest value was in Singapore: 130.04 index points and the lowest value was in Laos: 21.7 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
The Service Delivery Indicators (SDI) are a set of health and education indicators that examine the effort and ability of staff and the availability of key inputs and resources that contribute to a functioning school or health facility. The indicators are standardized, allowing comparison between and within countries over time.
The Health SDIs include healthcare provider effort, knowledge and ability, and the availability of key inputs (for example, basic equipment, medicines and infrastructure, such as toilets and electricity). The indicators provide a snapshot of the health facility and assess the availability of key resources for providing high quality care.
The Uganda SDI Health survey team visited a sample of 394 health facilities across Uganda between June and October 2013. The survey team collected rosters covering 2,347 workers for absenteeism and assessed 733 health workers for competence using patient case simulations.
National
Health facilities and healthcare providers
All health facilities providing primary-level care.
Sample survey data [ssd]
The sampling strategy for SDI surveys is designed towards attaining indicators that are accurate and representative at the national level, as this allows for proper cross-country (i.e. international benchmarking) and across time comparisons, when applicable. In addition, other levels of representativeness are sought to allow for further disaggregation (rural/urban areas, public/private facilities, subregions, etc.) during the analysis stage.
The sampling strategy for SDI surveys follows a multistage sampling approach. The main units of analysis are facilities (schools and health centers) and providers (health and education workers: teachers, doctors, nurses, facility managers, etc.). The multi-stage sampling approach makes sampling procedures more practical by dividing the selection of large populations of sampling units in a step-by-step fashion. After defining the sampling frame and categorizing it by stratum, a first stage selection of sampling units is carried out independently within each stratum. Often, the primary sampling units (PSU) for this stage are cluster locations (e.g. districts, communities, counties, neighborhoods, etc.) which are randomly drawn within each stratum with a probability proportional to the size (PPS) of the cluster (measured by the location’s number of facilities, providers or pupils). Once locations are selected, a second stage takes place by randomly selecting facilities within location (either with equal probability or with PPS) as secondary sampling units. At a third stage, a fixed number of health and education workers and pupils are randomly selected within facilities to provide information for the different questionnaire modules.
Detailed information about the specific sampling process is available in the associated SDI Country Report included as part of the documentation that accompany these datasets.
Face-to-face [f2f]
The SDI Health Survey Questionnaire consists of four modules and weights:
Module 1: General Information - Administered to the health facility manager to collect information on equipment, medicines, infrastructure and other facets of the health facility.
Module 2: Provider Absence - A roster of healthcare providers is collected and absence measured.
Module 3: Clinical Vignettes – A selection of providers are given clinical vignettes to measure knowledge of common medical conditions.
Module 4: Facility finances – Information on facility revenue and expenditures is collected from the health facility manager.
Weights: Weights for facilities, absentee-related analyses and clinical vignette analyses.
Quality control was performed in Stata.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Consumer Price Index (CPI): Urban: Medical Care data was reported at 574.739 1982-1984=100 in Mar 2025. This records an increase from the previous number of 573.320 1982-1984=100 for Feb 2025. United States Consumer Price Index (CPI): Urban: Medical Care data is updated monthly, averaging 105.100 1982-1984=100 from Mar 1935 (Median) to Mar 2025, with 987 observations. The data reached an all-time high of 574.739 1982-1984=100 in Mar 2025 and a record low of 10.200 1982-1984=100 in Dec 1936. United States Consumer Price Index (CPI): Urban: Medical Care data remains active status in CEIC and is reported by U.S. Bureau of Labor Statistics. The data is categorized under Global Database’s United States – Table US.I001: Consumer Price Index: Urban.
In 2023, Singapore dominated the ranking of the world's health and health systems, followed by Japan and South Korea. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The health and health system index score of the top ten countries with the best healthcare system in the world ranged between 82 and 86.9, measured on a scale of zero to 100.
Global Health Security Index Numerous health and health system indexes have been developed to assess various attributes and aspects of a nation's healthcare system. One such measure is the Global Health Security (GHS) index. This index evaluates the ability of 195 nations to identify, assess, and mitigate biological hazards in addition to political and socioeconomic concerns, the quality of their healthcare systems, and their compliance with international finance and standards. In 2021, the United States was ranked at the top of the GHS index, but due to multiple reasons, the U.S. government failed to effectively manage the COVID-19 pandemic. The GHS Index evaluates capability and identifies preparation gaps; nevertheless, it cannot predict a nation's resource allocation in case of a public health emergency.
Universal Health Coverage Index Another health index that is used globally by the members of the United Nations (UN) is the universal health care (UHC) service coverage index. The UHC index monitors the country's progress related to the sustainable developmental goal (SDG) number three. The UHC service coverage index tracks 14 indicators related to reproductive, maternal, newborn, and child health, infectious diseases, non-communicable diseases, service capacity, and access to care. The main target of universal health coverage is to ensure that no one is denied access to essential medical services due to financial hardships. In 2021, the UHC index scores ranged from as low as 21 to a high score of 91 across 194 countries.