Facebook
TwitterA 2024 survey found that over half of U.S. individuals indicated the cost of accessing treatment was the biggest problem facing the national healthcare system. This is much higher than the global average of 32 percent and is in line with the high cost of health care in the U.S. compared to other high-income countries. Bureaucracy along with a lack of staff were also considered to be pressing issues. This statistic reveals the share of individuals who said select problems were the biggest facing the health care system in the United States in 2024.
Facebook
TwitterHealth, United States is the report on the health status of the country. Every year, the report presents an overview of national health trends organized around four subject areas: health status and determinants, utilization of health resources, health care resources, and health care expenditures and payers.
Facebook
TwitterBetween January and September 2024, healthcare organizations in the United States saw 491 large-scale data breaches, resulting in the loss of over 500 records. This figure has increased significantly in the last decade. To date, the highest number of large-scale data breaches in the U.S. healthcare sector was recorded in 2023, with a reported 745 cases.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Health care in the United States is provided by many distinct organizations. Health care facilities are largely owned and operated by private sector businesses. 58% of US community hospitals are non-profit, 21% are government owned, and 21% are for-profit. According to the World Health Organization (WHO), the United States spent more on healthcare per capita ($9,403), and more on health care as percentage of its GDP (17.1%), than any other nation in 2014. Many different datasets are needed to portray different aspects of healthcare in US like disease prevalences, pharmaceuticals and drugs, Nutritional data of different food products available in US. Such data is collected by surveys (or otherwise) conducted by Centre of Disease Control and Prevention (CDC), Foods and Drugs Administration, Center of Medicare and Medicaid Services and Agency for Healthcare Research and Quality (AHRQ). These datasets can be used to properly review demographics and diseases, determining start ratings of healthcare providers, different drugs and their compositions as well as package informations for different diseases and for food quality. We often want such information and finding and scraping such data can be a huge hurdle. So, Here an attempt is made to make available all US healthcare data at one place to download from in csv files.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employment for Health Care and Social Assistance: Ambulatory Health Care Services (NAICS 621) in the United States (IPURN621W201000000) from 1988 to 2024 about ambulatory, healthcare, social assistance, health, NAICS, IP, services, employment, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset describes the number and density of health care services in each census tract in the United States. The data includes counts, per capita densities, and area densities per tract for many types of businesses in the health care sector, including doctors, dentists, mental health providers, hospitals, nursing homes, and pharmacies.
Facebook
TwitterThe percentage of people in the United States with health insurance has increased over the past decade with a noticeably sharp increase in 2014 when the Affordable Care Act (ACA) was enacted. As of 2024, around ** percent of people in the United States had some form of health insurance, compared to around ** percent in 2010. Despite the increases in the percentage of insured people in the U.S., there were still over ** million people in the United States without health insurance as of 2024. Insurance coverage Health insurance in the United States consists of different private and public insurance programs such as those provided by private employers or those provided publicly through Medicare and Medicaid. Almost half of the insured population in the United States were insured privately through an employer as of 2021, while **** percent of people were insured through Medicaid, and **** percent through Medicare . The Affordable Care Act The Affordable Care Act (ACA), enacted in 2014, has significantly reduced the number of uninsured people in the United States. In 2014, the percentage of U.S. individuals with health insurance increased to almost ** percent. Furthermore, the percentage of people without health insurance reached an all time low in 2022. Public opinion on healthcare reform in the United States remains an ongoing political issue with public opinion consistently divided.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Hours Worked for Health Care and Social Assistance: Offices of Physicians (NAICS 6211) in the United States (IPURN6211L201000000) from 1988 to 2024 about offices, physicians, healthcare, social assistance, health, NAICS, hours, IP, and USA.
Facebook
TwitterThe HCUP Summary Trend Tables include monthly information on hospital utilization derived from the HCUP State Inpatient Databases (SID) and HCUP State Emergency Department Databases (SEDD). Information on emergency department (ED) utilization is dependent on availability of HCUP data; not all HCUP Partners participate in the SEDD. The HCUP Summary Trend Tables include downloadable Microsoft® Excel tables with information on the following topics: Overview of monthly trends in inpatient and emergency department utilization All inpatient encounter types Inpatient stays by priority conditions -COVID-19 -Influenza -Other acute or viral respiratory infection Inpatient encounter type -Normal newborns -Deliveries -Non-elective inpatient stays, admitted through the ED -Non-elective inpatient stays, not admitted through the ED -Elective inpatient stays Inpatient service line -Maternal and neonatal conditions -Mental health and substance use disorders -Injuries -Surgeries -Other medical conditions Emergency department treat-and-release visits Emergency department treat-and-release visits by priority conditions -COVID-19 -Influenza -Other acute or viral respiratory infection Description of the data source, methodology, and clinical criteria
Facebook
TwitterUnited Healthcare Transparency in Coverage Dataset
Unlock the power of healthcare pricing transparency with our comprehensive United Healthcare Transparency in Coverage dataset. This invaluable resource provides unparalleled insights into healthcare costs, enabling data-driven decision-making for insurers, employers, researchers, and policymakers.
Key Features:
Detailed Data Points:
For each of the 76,000 employers, the dataset includes: 1. In-network negotiated rates for covered items and services 2. Historical out-of-network allowed amounts and billed charges 3. Cost-sharing information for specific items and services 4. Pricing data for medical procedures and services across providers, plans, and employers
Use Cases
For Insurers: - Benchmark your rates against competitors - Optimize network design and provider contracting - Develop more competitive and cost-effective insurance products
For Employers: - Make informed decisions about health plan offerings - Negotiate better rates with insurers and providers - Implement cost-saving strategies for employee healthcare
For Researchers: - Conduct in-depth studies on healthcare pricing variations - Analyze the impact of policy changes on healthcare costs - Investigate regional differences in healthcare pricing
For Policymakers: - Develop evidence-based healthcare policies - Monitor the effectiveness of price transparency initiatives - Identify areas for potential cost-saving interventions
Data Delivery
Our flexible data delivery options ensure you receive the information you need in the most convenient format:
Why Choose Our Dataset?
Harness the power of healthcare pricing transparency to drive your business forward. Contact us today to discuss how our United Healthcare Transparency in Coverage dataset can meet your specific needs and unlock valuable insights for your organization.
Facebook
TwitterIn 2023, there were more than *** incidents of data compromises in the healthcare sector in the United States. Reaching its all-time highest. This indicates a significant growth since 2005 when the industry saw only ** cases of data compromises in the country.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View quarterly updates and historical trends for US Health Care and Social Assistance Sector Total Revenue. from United States. Source: Census Bureau. Tra…
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Health Insurance: Enrollment data was reported at 271.000 USD mn in Sep 2024. This records an increase from the previous number of 269.000 USD mn for Jun 2024. United States Health Insurance: Enrollment data is updated quarterly, averaging 225.000 USD mn from Mar 2012 (Median) to Sep 2024, with 51 observations. The data reached an all-time high of 278.000 USD mn in Jun 2023 and a record low of 174.000 USD mn in Jun 2012. United States Health Insurance: Enrollment data remains active status in CEIC and is reported by National Association of Insurance Commissioners. The data is categorized under Global Database’s United States – Table US.RG017: Health Insurance: Industry Financial Snapshots.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Health Insurance Marketplace Public Use Files contain data on health and dental plans offered to individuals and small businesses through the US Health Insurance Marketplace.
To help get you started, here are some data exploration ideas:
See this forum thread for more ideas, and post there if you want to add your own ideas or answer some of the open questions!
This data was originally prepared and released by the Centers for Medicare & Medicaid Services (CMS). Please read the CMS Disclaimer-User Agreement before using this data.
Here, we've processed the data to facilitate analytics. This processed version has three components:
The original versions of the 2014, 2015, 2016 data are available in the "raw" directory of the download and "../input/raw" on Kaggle Scripts. Search for "dictionaries" on this page to find the data dictionaries describing the individual raw files.
In the top level directory of the download ("../input" on Kaggle Scripts), there are six CSV files that contain the combined at across all years:
Additionally, there are two CSV files that facilitate joining data across years:
The "database.sqlite" file contains tables corresponding to each of the processed CSV files.
The code to create the processed version of this data is available on GitHub.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees, Home Health Care Services (CEU6562160001) from Jan 1985 to Sep 2025 about health, establishment survey, education, services, employment, and USA.
Facebook
TwitterThis is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).Check the Data Dictionary for field descriptions.Search for the Medical Service Study Area data on the CHHS Open Data Portal.Checkout the California Healthcare Atlas for more Medical Service Study Area information.This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Number of People Pushed Below the 50% Median Consumption Poverty Line by Out-of-Pocket Health Care Expenditure data was reported at 1,848,000.000 Person in 2013. This records a decrease from the previous number of 1,986,000.000 Person for 2012. United States US: Number of People Pushed Below the 50% Median Consumption Poverty Line by Out-of-Pocket Health Care Expenditure data is updated yearly, averaging 2,141,000.000 Person from Dec 1995 (Median) to 2013, with 18 observations. The data reached an all-time high of 3,810,000.000 Person in 1996 and a record low of 1,604,000.000 Person in 2011. United States US: Number of People Pushed Below the 50% Median Consumption Poverty Line by Out-of-Pocket Health Care Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Poverty. Number of people pushed below the 50% median consumption poverty line by out-of-pocket health care expenditure; ; Wagstaff et al. Progress on Impoverishing Health Spending: Results for 122 Countries. A Retrospective Observational Study, Lancet Global Health 2017; Sum;
Facebook
TwitterNote: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Facebook
TwitterThis dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
Facebook
TwitterNote: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Facebook
TwitterA 2024 survey found that over half of U.S. individuals indicated the cost of accessing treatment was the biggest problem facing the national healthcare system. This is much higher than the global average of 32 percent and is in line with the high cost of health care in the U.S. compared to other high-income countries. Bureaucracy along with a lack of staff were also considered to be pressing issues. This statistic reveals the share of individuals who said select problems were the biggest facing the health care system in the United States in 2024.