In 2023, Singapore dominated the ranking of the world's health and health systems, followed by Japan and South Korea. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The health and health system index score of the top ten countries with the best healthcare system in the world ranged between 82 and 86.9, measured on a scale of zero to 100.
Global Health Security Index Numerous health and health system indexes have been developed to assess various attributes and aspects of a nation's healthcare system. One such measure is the Global Health Security (GHS) index. This index evaluates the ability of 195 nations to identify, assess, and mitigate biological hazards in addition to political and socioeconomic concerns, the quality of their healthcare systems, and their compliance with international finance and standards. In 2021, the United States was ranked at the top of the GHS index, but due to multiple reasons, the U.S. government failed to effectively manage the COVID-19 pandemic. The GHS Index evaluates capability and identifies preparation gaps; nevertheless, it cannot predict a nation's resource allocation in case of a public health emergency.
Universal Health Coverage Index Another health index that is used globally by the members of the United Nations (UN) is the universal health care (UHC) service coverage index. The UHC index monitors the country's progress related to the sustainable developmental goal (SDG) number three. The UHC service coverage index tracks 14 indicators related to reproductive, maternal, newborn, and child health, infectious diseases, non-communicable diseases, service capacity, and access to care. The main target of universal health coverage is to ensure that no one is denied access to essential medical services due to financial hardships. In 2021, the UHC index scores ranged from as low as 21 to a high score of 91 across 194 countries.
In 2023, the health care system in Finland ranked first with a care index score of ****, followed by Belgium and Japan. Care systems index score is measured using multiple indicators from various public databases, it evaluates the capacity of a health system to treat and cure diseases and illnesses, once it is detected in the population This statistic shows the care systems ranking of countries worldwide in 2023, by their index score.
According to a 2021 health care systems ranking among selected high-income countries, the United States came last in the overall ranking of its health care system performance. The overall ranking was based on five performance categories, including access to care, care process, administrative efficiency, equity, and health care outcomes. For the category care process, which measures preventive care, safe and coordinated care among others, the U.S. was ranked second, while New Zealand took first place. This statistic illustrates the health care process rankings of the United States' health care system compared to ten other high-income countries in 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 36 countries was 4.44 hospital beds. The highest value was in South Korea: 12.65 hospital beds and the lowest value was in Mexico: 0.99 hospital beds. The indicator is available from 1960 to 2021. Below is a chart for all countries where data are available.
In 2023, Norway ranked first with a health index score of 83, followed by Iceland and Sweden. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The statistic shows the health and health systems ranking of European countries in 2023, by their health index score.
In 2025, South Africa had the highest health care index in Africa with a score of 63.8, followed by Kenya with 62 points. These scores, for both countries, are considered to be reasonably high. The health care index takes into account factors such as the overall quality of the health care system, health care professionals, equipment, staff, doctors, and cost.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 36 countries was 356986 hospital beds. The highest value was in China: 7131200 hospital beds and the lowest value was in Iceland: 1039 hospital beds. The indicator is available from 1960 to 2021. Below is a chart for all countries where data are available.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
About Dataset:
The Global Hospital Dataset is a comprehensive collection of information on 20,000 hospitals located across the world. This dataset has been curated to provide a wide range of valuable information about these healthcare institutions, making it a valuable resource for various stakeholders in the healthcare industry, researchers, analysts, and policymakers.
Key Features:
Hospital Name: The names of the hospitals in the dataset. Country: The countries in which each hospital is located, providing a global perspective. World Rank: Ranking of hospitals on a global scale based on various criteria, showcasing the healthcare landscape. Size: Information about the physical size and capacity of each hospital. Visibility: A measure of the hospitals' visibility, which could include factors such as media coverage and online presence. Rich Files: Data related to any rich files associated with the hospitals, which could be valuable resources for analysis. Scholarship: Scholarly or academic scores for hospitals, reflecting their contributions to research and education.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite the fact that remote services were successfully implemented in most European social and health systems before 2020, the COVID-19 pandemic has led to an unprecedented development of health and social care services provided in this form. This paper compares the readiness of patients to use the digital solutions in healthcare systems implemented in EU countries, in response to the current pandemic situation. In the study, technological, health insurance, and demographic variables were selected on the basis of substantive criteria. Next, the linear ordering method was applied to make a ranking of the analyzed countries according to the level of patients' readiness to use digital healthcare services. The main findings show that the Netherlands and Ireland are characterized by the highest level of patients' readiness for using remote healthcare services. On the other hand, Romania and Bulgaria are among the countries with the lowest readiness. The study also made it possible to group European countries according to the level of patients' preparedness.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
South Korea Number of Hospital was up 3.5% in 2019, compared to the previous year.
Data on the top universities for Medical and Health in 2025, including disciplines such as Medicine and Dentistry, and Other Health Subjects.
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dominance analysis rankings service coverage indicators based as predictors of UHC SCI score, stratified by World Bank country ranking.
With over ***** medical centers, Brazil was the Latin American country with the highest number of hospitals in 2024, among the countries depicted. Mexico ranked second, with ***** hospitals. In 2022, Hospital Israelita Albert Einstein was the leading hospital by quality in the South American country. Healthcare spending With an estimated ** percent of its gross domestic product (GDP) being spent on health, Cuba was the nation with the highest health expenditure share in Latin America and the Caribbean in 2020. Ranking second in this ranking along with Argentina, Brazil’s government spent more than ** percent of its annual health expenditure on hospital and outpatient care. Meanwhile, in Chile, government spending on healthcare was, on average, about ***** U.S. dollars per person in 2021, which was more than the combined health expenditure from government and out-of-pocket spending in Mexico. Leading medical technology Including products such as diagnostic imaging, implants, and vaccines, nanomedicine has by far been Latin America’s most valuable medical technology, generating an estimated ***** billion U.S. dollars in 2022. Furthermore, the revenue of nanomedicine in the region is expected to reach ***** billion U.S. dollars by 2027, representing an increase of more than ** percent over a span of five years.More information by Global Health Intelligence on hospital infrastructure in various Latin American countries can be found here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionIn 2020, the COVID-19 epidemic swept the world, and many national health systems faced serious challenges. To improve future public health responses, it's necessary to evaluate the performance of each country's health system.MethodsWe developed a resilience evaluation system for national health systems based on their responses to COVID-19 using four resilience dimensions: government governance and prevention, health financing, health service provision, and health workers. We determined the weight of each index by combining the three-scale and entropy-weight methods. Then, based on data from 2020, we used the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method to rank the health system resilience of 60 countries, and then used hierarchical clustering to classify countries into groups based on their resilience level. Finally, we analyzed the causes of differences among countries in their resilience based on the four resilience dimensions.ResultsSwitzerland, Japan, Germany, Australia, South Korea, Canada, New Zealand, Finland, the United States, and the United Kingdom had the highest health system resilience in 2020. Eritrea, Nigeria, Libya, Tanzania, Burundi, Mozambique, Republic of the Niger, Benin, Côte d'Ivoire, and Guinea had the lowest resilience.DiscussionGovernment governance and prevention of COVID-19 will greatly affect a country's success in fighting future epidemics, which will depend on a government's emergency preparedness, stringency (a measure of the number and rigor of the measures taken), and testing capability. Given the lack of vaccines or specific drug treatments during the early stages of the 2020 epidemic, social distancing and wearing masks were the main defenses against COVID-19. Cuts in health financing had direct and difficult to reverse effects on health systems. In terms of health service provision, the number of hospitals and intensive care unit beds played a key role in COVID-19 clinical care. Resilient health systems were able to cope more effectively with the impact of COVID-19, provide stronger protection for citizens, and mitigate the impacts of COVID-19. Our evaluation based on data from 60 countries around the world showed that increasing health system resilience will improve responses to future public health emergencies.
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
The number of hospital beds ranking is led by China with 6.8 million beds, while Japan is following with 1.5 million beds. In contrast, Seychelles is at the bottom of the ranking with 0.09 thousand beds, showing a difference of 6.8 million beds to China. Depicted is the estimated total number of hospital beds in the country or region at hand.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundFurther improvements in population health in low- and middle-income countries demand high-quality care to address an increasingly complex burden of disease. Health facility surveys provide an important but costly source of information on readiness to provide care. To improve the efficiency of health system measurement, we applied unsupervised machine learning methods to assess the performance of the service readiness index (SRI) defined by the World Health Organization and compared it to empirically derived indices.MethodsWe drew data from nationally representative Service Provision Assessment surveys conducted in 10 countries between 2007 and 2015. We extracted 649 items in domains such as infrastructure, medication, and management to calculate an index using all available information and classified facilities into quintiles. We compared three approaches against the full item set: the SRI, a new index based on sequential backward selection, and an enriched SRI that added empirically selected items to the SRI. We evaluated index performance with a cross-validated kappa statistic comparing classification using the candidate index against the 649-item index.Results9238 facilities were assessed. The 49-item SRI performed poorly against the index using all 649 items, with a kappa value of 0.35. New empirically derived indices with 50 and 100 items captured much more information, with cross-validated kappa statistics of 0.71 and 0.80, respectively. Items varied across the indices and in sensitivity analyses. A 100-item enriched SRI reliably captured the information from the full index: 83% of the facilities were classified into correct quintiles of service readiness based on the full index.ConclusionA facility readiness measure developed by global health experts performed poorly in capturing the totality of readiness information collected during facility surveys. Using a machine learning approach with sequential selection and cross-validation to identify the most informative items dramatically improved performance. Such approaches can make assessment of health facility readiness more efficient. Further improvements in measurement will require identification of external criteria—such as patient outcomes—to guide and validate measure development.
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Medical errors represent a critical challenge to global healthcare systems, ranking among the leading causes of preventable morbidity and mortality. The aim of this study was to explore the evolution, characteristics, and correlation of research on medical errors and global health and research indicators.
In 2023, Singapore dominated the ranking of the world's health and health systems, followed by Japan and South Korea. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The health and health system index score of the top ten countries with the best healthcare system in the world ranged between 82 and 86.9, measured on a scale of zero to 100.
Global Health Security Index Numerous health and health system indexes have been developed to assess various attributes and aspects of a nation's healthcare system. One such measure is the Global Health Security (GHS) index. This index evaluates the ability of 195 nations to identify, assess, and mitigate biological hazards in addition to political and socioeconomic concerns, the quality of their healthcare systems, and their compliance with international finance and standards. In 2021, the United States was ranked at the top of the GHS index, but due to multiple reasons, the U.S. government failed to effectively manage the COVID-19 pandemic. The GHS Index evaluates capability and identifies preparation gaps; nevertheless, it cannot predict a nation's resource allocation in case of a public health emergency.
Universal Health Coverage Index Another health index that is used globally by the members of the United Nations (UN) is the universal health care (UHC) service coverage index. The UHC index monitors the country's progress related to the sustainable developmental goal (SDG) number three. The UHC service coverage index tracks 14 indicators related to reproductive, maternal, newborn, and child health, infectious diseases, non-communicable diseases, service capacity, and access to care. The main target of universal health coverage is to ensure that no one is denied access to essential medical services due to financial hardships. In 2021, the UHC index scores ranged from as low as 21 to a high score of 91 across 194 countries.