100+ datasets found
  1. Health ranking of countries worldwide in 2023, by health index score

    • statista.com
    Updated Nov 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Health ranking of countries worldwide in 2023, by health index score [Dataset]. https://www.statista.com/statistics/1290168/health-index-of-countries-worldwide-by-health-index-score/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In 2023, Singapore ranked first with a health index score of ****, followed by Japan and South Korea. The health index measures the extent to which people are healthy and have access to the necessary services to maintain good health, including health outcomes, health systems, illness and risk factors, and mortality rates. The statistic shows the health and health systems ranking of countries worldwide in 2023, by their health index score.

  2. Health care outcomes ranking of 11 select countries' health care systems...

    • statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Health care outcomes ranking of 11 select countries' health care systems 2021 [Dataset]. https://www.statista.com/statistics/1290458/health-care-system-health-outcomes-ranking-of-select-countries/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Worldwide
    Description

    According to a 2021 health care systems ranking among selected high-income countries, the United States came last in the overall ranking of its health care system performance. The overall ranking was based on five performance categories, including access to care, care process, administrative efficiency, equity, and health care outcomes. For the category health care outcomes, which takes into account health outcomes most likely to be responsive to health care, the U.S. was ranked last, while Australia took first place. Outcomes such as infant mortality or preventable mortality were included. This statistic present the health care outcomes rankings of the United States' health care system compared to ten other high-income countries in 2021.

  3. _Global Health Outcomes Data_

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). _Global Health Outcomes Data_ [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-health-outcomes-data
    Explore at:
    zip(7031 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Global Health Outcomes Data

    Impact on Mortality Rates and Malnutrition in Countries Around the World

    By Humanitarian Data Exchange [source]

    About this dataset

    This dataset provides comprehensive insights into critical health conditions around the world, such as mortality rate, malnutrition levels, and frequency of preventable diseases. It documents the prevalence of life-threatening diseases like malaria and tuberculosis, and are tracked alongside key health indicators like adult mortality rates, HIV prevalence, physicians per 10,000 people ratio and public health expenditures. Such metrics provide us with an accurate picture of how developed healthcare systems are in certain countries which ultimately leads to improvements in public policy formation and awareness amongst decision-makers. With this data it is possible to observe disparities between different regions of the world which can help inform global strategies for providing equitable care globally. This dataset is a valuable source for researchers interested in understanding global health trends over time or seeking to evaluate regional differences within countries

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive global health outcome data for countries around the world. It includes vital information such as infant mortality rates, child malnutrition rates, adult mortality rates, deaths due to malaria and tuberculosis, HIV prevalence rates, life expectancy at age 60 and public health expenditure. This dataset can be used to gain valuable insight into the challenges faced by different countries in providing a good quality of life for their citizens.

    To use this dataset, first identify what questions you need answered and what outcomes you are looking to measure. You may want to look at specific disease-based indicators (e.g. malaria or tuberculosis), health-related indicators (e.g., nutrition), or overall population markers (e.g., life expectancy).

    Then decide which data points from the provided fields will help answer your questions and provide the results needed - e.g,. infant mortality rate or HIV prevalence rate - extracting these values from relevant columns like “Infants lacking immunization (% of one-year-olds) Measles 2013” or “HIV prevalence, adult (% ages 15Ð49) 2013” respectively

    Next extract other columnwise relevant information - e.g., country name — that could also aid your analysis using tools like Excel or Python's Pandas library; sorting through them based on any metric desired — e..g,, physicians per 10k people — while being mindful that some data points are missing in some cases (denoted by NA).

    Finally perform basic analyses with either your own scripting language, like R/Python libraries' numerical functions with accompanying visuals/graphs etc if elucidating trends is desired; drawing meaningful conclusions about overall state of global health outcomes accordingly before making informed decisions thereafter if needed too!

    Research Ideas

    • Create a world health map to visualize the differences in health outcomes across different countries and regions.
    • Develop an AI-based decision support tool that identifies optimal public health policies or interventions based on these metrics for different countries.
    • Design a dashboard or web app that displays and updates this data in real-time, to allow users to compare the current state of global health indicators and benchmark them against historical figures

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: health-outcomes-csv-1.csv | Column name | Description | |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------| | Country | The name of the country. (String) ...

  4. Comparative Performance of Private and Public Healthcare Systems in Low- and...

    • plos.figshare.com
    doc
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjay Basu; Jason Andrews; Sandeep Kishore; Rajesh Panjabi; David Stuckler (2023). Comparative Performance of Private and Public Healthcare Systems in Low- and Middle-Income Countries: A Systematic Review [Dataset]. http://doi.org/10.1371/journal.pmed.1001244
    Explore at:
    docAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Sanjay Basu; Jason Andrews; Sandeep Kishore; Rajesh Panjabi; David Stuckler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionPrivate sector healthcare delivery in low- and middle-income countries is sometimes argued to be more efficient, accountable, and sustainable than public sector delivery. Conversely, the public sector is often regarded as providing more equitable and evidence-based care. We performed a systematic review of research studies investigating the performance of private and public sector delivery in low- and middle-income countries. Methods and FindingsPeer-reviewed studies including case studies, meta-analyses, reviews, and case-control analyses, as well as reports published by non-governmental organizations and international agencies, were systematically collected through large database searches, filtered through methodological inclusion criteria, and organized into six World Health Organization health system themes: accessibility and responsiveness; quality; outcomes; accountability, transparency, and regulation; fairness and equity; and efficiency. Of 1,178 potentially relevant unique citations, data were obtained from 102 articles describing studies conducted in low- and middle-income countries. Comparative cohort and cross-sectional studies suggested that providers in the private sector more frequently violated medical standards of practice and had poorer patient outcomes, but had greater reported timeliness and hospitality to patients. Reported efficiency tended to be lower in the private than in the public sector, resulting in part from perverse incentives for unnecessary testing and treatment. Public sector services experienced more limited availability of equipment, medications, and trained healthcare workers. When the definition of “private sector” included unlicensed and uncertified providers such as drug shop owners, most patients appeared to access care in the private sector; however, when unlicensed healthcare providers were excluded from the analysis, the majority of people accessed public sector care. “Competitive dynamics” for funding appeared between the two sectors, such that public funds and personnel were redirected to private sector development, followed by reductions in public sector service budgets and staff. ConclusionsStudies evaluated in this systematic review do not support the claim that the private sector is usually more efficient, accountable, or medically effective than the public sector; however, the public sector appears frequently to lack timeliness and hospitality towards patients. Please see later in the article for the Editors' Summary

  5. Global Health Statistics

    • kaggle.com
    zip
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MalaiarasuGRaj (2024). Global Health Statistics [Dataset]. https://www.kaggle.com/datasets/malaiarasugraj/global-health-statistics/code
    Explore at:
    zip(46401891 bytes)Available download formats
    Dataset updated
    Nov 27, 2024
    Authors
    MalaiarasuGRaj
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides comprehensive statistics on global health, focusing on various diseases, treatments, and outcomes. The data spans multiple countries and years, offering valuable insights for health research, epidemiology studies, and machine learning applications. The dataset includes information on the prevalence, incidence, and mortality rates of major diseases, as well as the effectiveness of treatments and healthcare infrastructure.

    Dataset Use Cases:

    This dataset can be used for:

    • Healthcare Policy Analysis: Understanding which diseases are most prevalent and which countries require more investment in healthcare infrastructure.
    • Epidemiological Studies: Studying the correlation between disease prevalence and socio-economic factors like income, education, and urbanization.
    • Machine Learning Models: Training predictive models to forecast disease trends, mortality rates, and treatment effectiveness based on historical data.
    • Global Health Research: Identifying regions that need targeted interventions or public health campaigns.
  6. Health, United States

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Health, United States [Dataset]. https://catalog.data.gov/dataset/health-united-states-e04e6
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Health, United States is the report on the health status of the country. Every year, the report presents an overview of national health trends organized around four subject areas: health status and determinants, utilization of health resources, health care resources, and health care expenditures and payers.

  7. Under-five mortality rate convergence results.

    • plos.figshare.com
    xls
    Updated Oct 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ariane Ephemia Ndzignat Mouteyica; Nicholas Nwanyek Ngepah (2024). Under-five mortality rate convergence results. [Dataset]. http://doi.org/10.1371/journal.pone.0312089.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ariane Ephemia Ndzignat Mouteyica; Nicholas Nwanyek Ngepah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Progress in health outcomes across Africa has been uneven, marked by significant disparities among countries, which not only challenges the global health security but impede progress towards achieving the United Nations’ Sustainable Development Goals 3 and 10 (SDG 3 and SDG 10) and Universal Health Coverage (UHC). This paper examines the progress of African countries in reducing intra-country health outcome disparities between 2000 and 2019. In other words, the paper investigates the convergence hypothesis in health outcome using a panel data from 40 African countries. Data were sourced from the World Development Indicators, the World Governance Indicators, and the World Health Organization database. Employing a non-linear dynamic factor model, the study focused on three health outcomes: infant mortality rate, under-5 mortality rate, and life expectancy at birth. The findings indicate that while the hypothesis of convergence is not supported for the selected countries, evidence of convergence clubs is observed for the three health outcome variables. The paper further examine the factors contributing to club formation by using the marginal effects of the ordered logit regression model. The findings indicate that the overall impact of the control variables aligns with existing research. Moreover, governance quality and domestic government health expenditure emerge as significant determinants influencing the probability of membership in specific clubs for the child mortality rate models. In the life expectancy model, governance quality significantly drives club formation. The results suggest that there is a need for common health policies for the different convergence clubs, while country-specific policies should be implemented for the divergent countries. For instance, policies and strategies promoting health prioritization in national budget allocation and reallocation should be encouraged within each final club. Efforts to promote good governance policies by emphasizing anti-corruption measures and government effectiveness should also be encouraged. Moreover, there is a need to implement regional monitoring mechanisms to ensure progress in meeting health commitments, while prioritizing urbanization plans in countries with poorer health outcomes to enhance sanitation access.

  8. World Health Survey 2003 - Chad

    • apps.who.int
    • catalog.ihsn.org
    • +1more
    Updated Jun 19, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Chad [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/77
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Chad
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  9. Health & Education of Top Countries

    • kaggle.com
    zip
    Updated May 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PSI (2023). Health & Education of Top Countries [Dataset]. https://www.kaggle.com/datasets/vinayak121/health-and-education-of-top-countries/code
    Explore at:
    zip(2376826 bytes)Available download formats
    Dataset updated
    May 6, 2023
    Authors
    PSI
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This dataset provides a comparative analysis of education and health indicators across top countries, including Poland, Finland, Italy, and the USA etc... The data covers a range of indicators related to education, such as literacy rates, enrollment rates, and education spending, as well as health indicators such as life expectancy, infant mortality rates, and healthcare spending. The data is sourced from various official and publicly available data sources, including the World Bank, the United Nations, and country-specific government websites. Researchers, analysts, and educators can use this dataset to gain insights into the education and health outcomes of different countries, as well as to identify areas for improvement and best practices. The dataset is ideal for cross-country comparative analysis and can be used to inform policy-making, research, and educational programs.

  10. Global Climate-Health Impact Tracker (2015-2025)

    • kaggle.com
    zip
    Updated Oct 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sohum Gokhale (2025). Global Climate-Health Impact Tracker (2015-2025) [Dataset]. https://www.kaggle.com/datasets/sohumgokhale/global-climate-health-impact-tracker-2015-2025
    Explore at:
    zip(561522 bytes)Available download formats
    Dataset updated
    Oct 19, 2025
    Authors
    Sohum Gokhale
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This comprehensive dataset tracks the relationship between climate events and health outcomes across 25 countries from 2015 to 2025. Perfect for climate-health research, predictive modeling, and policy analysis.

    14,100 records | 30 features | 11 years | Weekly data 25 countries across 8 regions | 3 income levels 100% complete (0% missing values)

    Key Features: • Climate indicators (temperature, precipitation, extreme events) • Air quality measurements (PM2.5, AQI) • Health outcomes (respiratory, cardiovascular, vector-borne diseases) • Socioeconomic factors (healthcare access, GDP) • Well being indicators (mental health, food security)

    Use Cases: Climate-health correlation analysis Predictive health modeling Time series forecasting Policy impact assessment Regional comparative studies

  11. World Health Survey 2003 - Austria

    • apps.who.int
    • catalog.ihsn.org
    • +2more
    Updated Jun 19, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Austria [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/117
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Austria
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  12. Health ranking of European countries in 2023, by health index score

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Health ranking of European countries in 2023, by health index score [Dataset]. https://www.statista.com/statistics/1376355/health-index-of-countries-in-europe/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Europe
    Description

    In 2023, Norway ranked first with a health index score of 83, followed by Iceland and Sweden. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The statistic shows the health and health systems ranking of European countries in 2023, by their health index score.

  13. World Health Survey 2003 - Slovenia

    • microdata.worldbank.org
    • apps.who.int
    • +2more
    Updated Oct 17, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/1749
    Explore at:
    Dataset updated
    Oct 17, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Slovenia
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  14. r

    Global Hospital Average Length of Stay for Factors Influencing Health Status...

    • reportlinker.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Global Hospital Average Length of Stay for Factors Influencing Health Status and Contact with Health Services by Country, 2023 [Dataset]. https://www.reportlinker.com/dataset/50ada1d8f0857b193a84bd7cb96c11765a4fec5e
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Global Hospital Average Length of Stay for Factors Influencing Health Status and Contact with Health Services by Country, 2023 Discover more data with ReportLinker!

  15. World Health Survey 2003, Wave 0 - China

    • apps.who.int
    • catalog.ihsn.org
    • +2more
    Updated Jun 19, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003, Wave 0 - China [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/78
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    China
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  16. r

    Global Hospital Discharges for Factors Influencing Health Status and Contact...

    • reportlinker.com
    Updated Apr 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Global Hospital Discharges for Factors Influencing Health Status and Contact with Health Services by Country, 2023 [Dataset]. https://www.reportlinker.com/dataset/364eabb806b24417f87368512adcbb08bee4f8b6
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Global Hospital Discharges for Factors Influencing Health Status and Contact with Health Services by Country, 2023 Discover more data with ReportLinker!

  17. World Health Survey 2003 - Ireland

    • apps.who.int
    • catalog.ihsn.org
    • +2more
    Updated Jun 19, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Ireland [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/137
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Ireland
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  18. Global Health Spending (Over time)

    • kaggle.com
    zip
    Updated Jan 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Health Spending (Over time) [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-health-spending
    Explore at:
    zip(152329 bytes)Available download formats
    Dataset updated
    Jan 29, 2023
    Authors
    The Devastator
    Description

    Global Health Spending

    Country Global Health Spending Over Time

    By Eva Murray [source]

    About this dataset

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    To get started with this data, begin by exploring the location and time columns as these will provide a breakdown of which countries are represented in the dataset as well as when each observation was collected. To drill down further into the analysis, use indicators, subjects and measures fields for comparison between healthcare spending for different topics like drug access or acute care across countries over time. The values field contains actual values related to healthcare spending while flag codes tell you if there are any discrepancies in data quality so it is important look into those too if necessary.

    This dataset is useful for research relatedto how global health expenditures have varied across different countries over time and difference sources of funding among a few other applications. Understanding what's included in this dataset will help you determine how best to use it when doing comparative country-level analyses or international studies on healthcare funding sources over time

    Research Ideas

    • Identify countries with high public health spending as a percentage of GDP and determine if their population has better health outcomes than those with lower spending.
    • Compare public health investments across various countries during the same period to ascertain areas that need more attention, such as medical research, vaccinations, medication and healthcare staffing.
    • Determine the trends in health expenditures over time for key indicators such as life expectancy to gain insights into how well a country is managing its healthcare sector

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: DP_LIVE_18102020154144776.csv | Column name | Description | |:---------------|:-----------------------------------------| | LOCATION | Country or region of the data. (String) | | INDICATOR | Health spending indicator. (String) | | SUBJECT | Health spending subject. (String) | | MEASURE | Measurement of health spending. (String) | | FREQUENCY | Frequency of data collection. (String) | | TIME | Year of data collection. (Integer) | | Value | Value of health spending. (Float) | | Flag Codes | Codes related to data quality. (String) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Eva Murray.

  19. Life expectancy at birth convergence results.

    • plos.figshare.com
    xls
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ariane Ephemia Ndzignat Mouteyica; Nicholas Nwanyek Ngepah (2024). Life expectancy at birth convergence results. [Dataset]. http://doi.org/10.1371/journal.pone.0312089.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ariane Ephemia Ndzignat Mouteyica; Nicholas Nwanyek Ngepah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Progress in health outcomes across Africa has been uneven, marked by significant disparities among countries, which not only challenges the global health security but impede progress towards achieving the United Nations’ Sustainable Development Goals 3 and 10 (SDG 3 and SDG 10) and Universal Health Coverage (UHC). This paper examines the progress of African countries in reducing intra-country health outcome disparities between 2000 and 2019. In other words, the paper investigates the convergence hypothesis in health outcome using a panel data from 40 African countries. Data were sourced from the World Development Indicators, the World Governance Indicators, and the World Health Organization database. Employing a non-linear dynamic factor model, the study focused on three health outcomes: infant mortality rate, under-5 mortality rate, and life expectancy at birth. The findings indicate that while the hypothesis of convergence is not supported for the selected countries, evidence of convergence clubs is observed for the three health outcome variables. The paper further examine the factors contributing to club formation by using the marginal effects of the ordered logit regression model. The findings indicate that the overall impact of the control variables aligns with existing research. Moreover, governance quality and domestic government health expenditure emerge as significant determinants influencing the probability of membership in specific clubs for the child mortality rate models. In the life expectancy model, governance quality significantly drives club formation. The results suggest that there is a need for common health policies for the different convergence clubs, while country-specific policies should be implemented for the divergent countries. For instance, policies and strategies promoting health prioritization in national budget allocation and reallocation should be encouraged within each final club. Efforts to promote good governance policies by emphasizing anti-corruption measures and government effectiveness should also be encouraged. Moreover, there is a need to implement regional monitoring mechanisms to ensure progress in meeting health commitments, while prioritizing urbanization plans in countries with poorer health outcomes to enhance sanitation access.

  20. World Health Survey 2003 - Croatia

    • apps.who.int
    • catalog.ihsn.org
    • +2more
    Updated Jun 19, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Croatia [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/114
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Croatia
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Health ranking of countries worldwide in 2023, by health index score [Dataset]. https://www.statista.com/statistics/1290168/health-index-of-countries-worldwide-by-health-index-score/
Organization logo

Health ranking of countries worldwide in 2023, by health index score

Explore at:
26 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 19, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
Worldwide
Description

In 2023, Singapore ranked first with a health index score of ****, followed by Japan and South Korea. The health index measures the extent to which people are healthy and have access to the necessary services to maintain good health, including health outcomes, health systems, illness and risk factors, and mortality rates. The statistic shows the health and health systems ranking of countries worldwide in 2023, by their health index score.

Search
Clear search
Close search
Google apps
Main menu