100+ datasets found
  1. Data from: County Health Status Profiles

    • data.chhs.ca.gov
    • healthdata.gov
    • +2more
    csv, zip
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). County Health Status Profiles [Dataset]. https://data.chhs.ca.gov/dataset/county-health-status-profiles
    Explore at:
    csv(4783), csv(567843), csv(570685), zip, csv(570397), csv(549726)Available download formats
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    County Health Status Profiles is an annually published report for the State of California by the California Department of Public Health in collaboration with the California Conference of Local Health Officers. Health indicators are measured for 58 counties and California statewide that can be directly compared to national standards and populations of similar composition. Where available, the measurements are ranked and compared with target rates established for Healthy People National Objectives.

    For tables where the health indicator denominator and numerator are derived from the same data source, the denominator excludes records for which the health indicator data is missing and unable to be imputed.

    For more information see the County Health Status Profiles report.

  2. a

    County Demographics & Health Statistics

    • diabetes-in-los-angeles-healthgis.hub.arcgis.com
    Updated Nov 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Model Health Organization (2019). County Demographics & Health Statistics [Dataset]. https://diabetes-in-los-angeles-healthgis.hub.arcgis.com/items/4dd7a67603724c82bfd53daac0d14785
    Explore at:
    Dataset updated
    Nov 19, 2019
    Dataset authored and provided by
    Model Health Organization
    Area covered
    Description

    Demographic and health data for all counties in the USA.

  3. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Mar 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2022). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Mar 3, 2022
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  4. C

    Allegheny County Obesity Rates

    • data.wprdc.org
    • datadiscoverystudio.org
    • +2more
    csv, html, zip
    Updated Jun 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2024). Allegheny County Obesity Rates [Dataset]. https://data.wprdc.org/dataset/allegheny-county-obesity-rates
    Explore at:
    csv, zip, htmlAvailable download formats
    Dataset updated
    Jun 3, 2024
    Dataset provided by
    Allegheny County
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Allegheny County
    Description

    Obesity rates for each Census Tract in Allegheny County were produced for the study “Developing small-area predictions for smoking and obesity prevalence in the United States." The data is not explicitly based on population surveys or data collection conducted in Allegheny County, but rather estimated using statistical modeling techniques. In this technique, researchers applied the obesity rate of a demographically similar census tract to one in Allegheny County to compute an obesity rate.

    Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.

  5. Medical Marijuana Statistics by County

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). Medical Marijuana Statistics by County [Dataset]. https://www.johnsnowlabs.com/marketplace/medical-marijuana-statistics-by-county/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Area covered
    N/A
    Description

    This dataset contains the Medical Marijuana Registry Program Update by County as of January 31, 2014.

  6. Vital Statistics Deaths by Resident County, Region, and Age-Group: Beginning...

    • healthdata.gov
    • health.data.ny.gov
    • +1more
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    health.data.ny.gov (2025). Vital Statistics Deaths by Resident County, Region, and Age-Group: Beginning 2003 [Dataset]. https://healthdata.gov/State/Vital-Statistics-Deaths-by-Resident-County-Region-/8xje-tbte
    Explore at:
    xml, csv, tsv, application/rssxml, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    health.data.ny.gov
    Description

    This dataset contains death counts by county, region, and age group. For more information check out: http://www.health.ny.gov/statistics/vital_statistics/.

  7. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    application/rdfxml +5
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/njmz-dpbc
    Explore at:
    application/rdfxml, csv, application/rssxml, xml, tsv, jsonAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  8. o

    US Health and Recreation Stats by County, all States

    • cloudbirst.my.opendatasoft.com
    csv, excel, geojson +1
    Updated Oct 24, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). US Health and Recreation Stats by County, all States [Dataset]. https://cloudbirst.my.opendatasoft.com/explore/dataset/healthbycountyus/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Oct 24, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    US Health statistics by County, including Adult and Child Diabetes rates from 2007 to present, Adult and Child Obesity rates from 2007 to present, number and % change of available recreation and fitness facilities, preschool obesity rates for low-income children from 2008 to present, High school physical activity rates, and the ERS natural amenity index, 1999.The natural amenities scale, based on relatively permanent characteristics of counties-climate, topography, and lake, pond and ocean water area, is necessarily only a partial measure of an area's natural attributes that might influence migration and development. Area attractiveness also depends on how land is used.

  9. d

    Population Health Measures: Age-Adjusted Mortality Rates

    • catalog.data.gov
    • data.montgomerycountymd.gov
    • +2more
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.montgomerycountymd.gov (2025). Population Health Measures: Age-Adjusted Mortality Rates [Dataset]. https://catalog.data.gov/dataset/population-health-measures-age-adjusted-mortality-rates
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.montgomerycountymd.gov
    Description

    Age-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents). Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.

  10. Health Status Statistics - Zip Code

    • data-sccphd.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Feb 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Health Status Statistics - Zip Code [Dataset]. https://data-sccphd.opendata.arcgis.com/datasets/health-status-statistics-zip-code
    Explore at:
    Dataset updated
    Feb 21, 2018
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Zip Code, Life expectancy; Cancer deaths per 100,000 people; Heart disease deaths per 100,000 people; Alzheimer’s disease deaths per 100,000 people; Stroke deaths per 100,000 people; Chronic lower respiratory disease deaths per 100,000 people; Unintentional injury deaths per 100,000 people; Diabetes deaths per 100,000 people; Influenza and pneumonia deaths per 100,000 people; Hypertension deaths per 100,000 people. Percentages unless otherwise noted. Source information provided at: https://www.sccgov.org/sites/phd/hi/hd/Documents/City%20Profiles/Methodology/Neighborhood%20profile%20methodology_082914%20final%20for%20web.pdf

  11. w

    Community Health: Lyme Disease Incidence Rate per 100,000 by County Map:...

    • data.wu.ac.at
    • gimi9.com
    Updated Sep 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Data NY - DOH (2017). Community Health: Lyme Disease Incidence Rate per 100,000 by County Map: Latest Data [Dataset]. https://data.wu.ac.at/schema/health_data_ny_gov/NnN4ci1jcWlq
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    Open Data NY - DOH
    Description

    This map shows the Lyme Disease incidence rate per 100,000 by county. Counties are shaded based on quartile distribution. The lighter shaded counties have lower incidence rates of Lyme Disease. The darker shaded counties have higher incidence rates of Lyme Disease. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 11 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset.

  12. d

    COVID-19 Tests, Cases, Hospitalizations, and Deaths (Statewide) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Tests, Cases, Hospitalizations, and Deaths (Statewide) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-tests-cases-hospitalizations-and-deaths-statewide
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 tests, cases, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported daily, with

  13. g

    Community Health: Total Emergency Department Visit Rate per 10,000 by County...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Community Health: Total Emergency Department Visit Rate per 10,000 by County Map: Latest Data [Dataset]. https://gimi9.com/dataset/ny_2g9p-uefx/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This map shows the total emergency department visit rate per 10,000 by county. Counties are shaded based on quartile distribution. The lighter shaded counties have lower emergency department visit rates. The darker shaded counties have higher emergency department visit rates. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 11 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset.

  14. w

    Community Health: Percentage Premature Deaths - Aged < 75 years by County...

    • data.wu.ac.at
    • gimi9.com
    Updated Sep 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Data NY - DOH (2017). Community Health: Percentage Premature Deaths - Aged < 75 years by County Map: Latest Data [Dataset]. https://data.wu.ac.at/odso/health_data_ny_gov/YWN3OS11eWVx
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    Open Data NY - DOH
    Description

    This map shows the percentage of premature deaths of individuals less than 75 years old by county. Counties are shaded based on quartile distribution. The lighter shaded counties have a lower percentage of premature deaths. The darker shaded counties have a higher percentage of premature deaths. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 11 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset.

  15. COVID-19 HPSC County Statistics Historic Data

    • data.gov.ie
    • datasalsa.com
    • +6more
    Updated Nov 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2023). COVID-19 HPSC County Statistics Historic Data [Dataset]. https://data.gov.ie/dataset/covid-19-hpsc-county-statistics-historic-data2
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset provided by
    data.gov.ie
    Description

    Please see FAQ for latest information on COVID-19 Data Hub data flows: https://covid-19.geohive.ie/pages/helpfaqs.Notice:See the Technical Data Issues section in the FAQ for information about issues in data: https://covid-19.geohive.ie/pages/helpfaqs.Deaths: From 16th May 2022 onwards, reporting of Notified Deaths will be weekly (each Wednesday) with total deaths notified since the previous Wednesday reported. This is based on the date on which a death was notified on CIDR, not the date on which the death occurred. Data on deaths by date of death is available on the new HPSC Epidemiology of COVID-19 Data Hub https://epi-covid-19-hpscireland.hub.arcgis.com/.This Layer contains Covid-19 Daily Statistics for Ireland by County polygon as reported by the Health Protection Surveillance Centre. This service is updated once a week, each Wednesday, which includes data for the full time series.

  16. Colombia CO: Number of Deaths Ages 5-9 Years

    • ceicdata.com
    Updated Feb 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Colombia CO: Number of Deaths Ages 5-9 Years [Dataset]. https://www.ceicdata.com/en/colombia/health-statistics
    Explore at:
    Dataset updated
    Feb 27, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Colombia
    Description

    CO: Number of Deaths Ages 5-9 Years data was reported at 814.000 Person in 2019. This records a decrease from the previous number of 823.000 Person for 2018. CO: Number of Deaths Ages 5-9 Years data is updated yearly, averaging 1,271.000 Person from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 1,716.000 Person in 1990 and a record low of 814.000 Person in 2019. CO: Number of Deaths Ages 5-9 Years data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Health Statistics. Number of deaths of children ages 5-9 years; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  17. d

    Rates of Preventable Hospitalizations (Age<18) for Selected Medical...

    • catalog.data.gov
    • data.chhs.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Rates of Preventable Hospitalizations (Age<18) for Selected Medical Conditions by County [Dataset]. https://catalog.data.gov/dataset/rates-of-preventable-hospitalizations-age18-for-selected-medical-conditions-by-county-69bd7
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    Department of Health Care Access and Information
    Description

    The dataset currently contains hospitalization counts and rates, statewide and by county, for 4 conditions plus 3 composite measures. Hospitalizations for these conditions are potentially preventable through access to high-quality outpatient care. The conditions include: asthma (age 2-17), diabetes short-term complications (age 6-17), gastroenteritis (age 3 months-17 years), perforated appendix (retired, 2016), urinary tract infections (age 3 months-17 years), and low birth weight (<2500 grams; retired, 2016). The composite measures (age 6-17) include overall, acute conditions, and chronic conditions. The data provides a good starting point for assessing quality of health services in the community. The data does not measure hospital quality. Note: In 2015, HCAI only released the first three quarters of data due to a change in the reporting of diagnoses from ICD-9-CM to ICD-10-CM codes, effective October 1, 2015. Due to the significant differences resulting from the code change, the ICD-9-CM data is distinguished from the ICD-10-CM data in the data file beginning in 2016.

  18. Colombia CO: Number of Death: Under-5

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Colombia CO: Number of Death: Under-5 [Dataset]. https://www.ceicdata.com/en/colombia/social-health-statistics
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Colombia
    Description

    CO: Number of Death: Under-5 data was reported at 8,500.000 Person in 2023. This records a decrease from the previous number of 8,819.000 Person for 2022. CO: Number of Death: Under-5 data is updated yearly, averaging 29,708.500 Person from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 92,143.000 Person in 1960 and a record low of 8,500.000 Person in 2023. CO: Number of Death: Under-5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Health Statistics. Number of children dying before reaching age five.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Sum;Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.

  19. Colombia CO: Prevalence of Undernourishment: % of Population

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Colombia CO: Prevalence of Undernourishment: % of Population [Dataset]. https://www.ceicdata.com/en/colombia/social-health-statistics
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Colombia
    Description

    CO: Prevalence of Undernourishment: % of Population data was reported at 4.200 % in 2022. This stayed constant from the previous number of 4.200 % for 2021. CO: Prevalence of Undernourishment: % of Population data is updated yearly, averaging 8.650 % from Dec 2001 (Median) to 2022, with 22 observations. The data reached an all-time high of 11.300 % in 2010 and a record low of 4.200 % in 2022. CO: Prevalence of Undernourishment: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Social: Health Statistics. Prevalence of undernourishments is the percentage of the population whose habitual food consumption is insufficient to provide the dietary energy levels that are required to maintain a normal active and healthy life. Data showing as 2.5 may signify a prevalence of undernourishment below 2.5%.;Food and Agriculture Organization (http://www.fao.org/faostat/en/#home).;Weighted average;This is the Sustainable Development Goal indicator 2.1.1[https://unstats.un.org/sdgs/metadata/].

  20. PLACES: Local Data for Better Health, Census Tract Data 2024 release

    • data.cdc.gov
    • healthdata.gov
    • +1more
    Updated Oct 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health (2020). PLACES: Local Data for Better Health, Census Tract Data 2024 release [Dataset]. https://data.cdc.gov/500-Cities-Places/PLACES-Local-Data-for-Better-Health-Census-Tract-D/cwsq-ngmh
    Explore at:
    csv, xml, application/rssxml, application/rdfxml, tsv, kmz, application/geo+json, kmlAvailable download formats
    Dataset updated
    Oct 19, 2020
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset contains model-based census tract estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 40 measures: 12 for health outcomes, 7 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, 3 for health status, and 7 for health-related social needs. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population data, and American Community Survey 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2025). County Health Status Profiles [Dataset]. https://data.chhs.ca.gov/dataset/county-health-status-profiles
Organization logo

Data from: County Health Status Profiles

Related Article
Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
csv(4783), csv(567843), csv(570685), zip, csv(570397), csv(549726)Available download formats
Dataset updated
Apr 22, 2025
Dataset authored and provided by
California Department of Public Healthhttps://www.cdph.ca.gov/
Description

County Health Status Profiles is an annually published report for the State of California by the California Department of Public Health in collaboration with the California Conference of Local Health Officers. Health indicators are measured for 58 counties and California statewide that can be directly compared to national standards and populations of similar composition. Where available, the measurements are ranked and compared with target rates established for Healthy People National Objectives.

For tables where the health indicator denominator and numerator are derived from the same data source, the denominator excludes records for which the health indicator data is missing and unable to be imputed.

For more information see the County Health Status Profiles report.

Search
Clear search
Close search
Google apps
Main menu