Facebook
TwitterThis dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES project by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. It represents a first-of-its kind effort to release information uniformly on this large scale. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. This data only covers the health of adults (people 18 and over) in East Baton Rouge Parish. All estimates lie within a 95% confidence interval.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Zip Code, Life expectancy; Cancer deaths per 100,000 people; Heart disease deaths per 100,000 people; Alzheimer’s disease deaths per 100,000 people; Stroke deaths per 100,000 people; Chronic lower respiratory disease deaths per 100,000 people; Unintentional injury deaths per 100,000 people; Diabetes deaths per 100,000 people; Influenza and pneumonia deaths per 100,000 people; Hypertension deaths per 100,000 people. Percentages unless otherwise noted. Source information provided at: https://www.sccgov.org/sites/phd/hi/hd/Documents/City%20Profiles/Methodology/Neighborhood%20profile%20methodology_082914%20final%20for%20web.pdf
Facebook
Twitterhealth_status_statistics_zipcode
Facebook
TwitterVITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Facebook
TwitterThis dataset contains counts of live births to California residents by ZIP Code based on information entered on birth certificates. Final counts are derived from static data and include out-of-state births to California residents. The data tables include births to residents of California by ZIP Code of residence (by residence).
Note that ZIP Codes are intended for mail delivery routing and do not represent geographic regions. ZIP Codes are subject to change over time and may not represent the same locations between different time periods. All ZIP Codes in the list of California ZIP Codes used for validation are included for all years, but this does not mean that the ZIP Code was in use at that time.
Facebook
TwitterThe dataset here provides the total number of Qualified Health Plan selections by ZIP Code for 37 states for the second Health Insurance Marketplace open enrollment period (November 15, 2014 – February 15, 2015, including additional special enrollment period activity reported through February 22, 2015).
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains model-based census tract estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 40 measures: 12 for health outcomes, 7 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, 3 for health status, and 7 for health-related social needs. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population data, and American Community Survey 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.
Facebook
Twitterhealthy_safe_environment_statistics_zipcode
Facebook
TwitterThis dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Zip Code; Population Size; African American; Asian/Pacific Islander; Latino; White; Foreign-born; Speaks a language other than English at home; Single parent households; Households with children; Average household size; 0-5 years; 6-11 years; 12-17 years; 18-24 years; 25-34 years; 35-44 years; 45-54 years; 55-64 years; Ages 65 and older; Ages 17 and younger. Percentages unless otherwise noted. Source information provided at: https://www.sccgov.org/sites/phd/hi/hd/Documents/City%20Profiles/Methodology/Neighborhood%20profile%20methodology_082914%20final%20for%20web.pdf
Facebook
TwitterThis data package has the purpose to offer data for demographic indicators, part of 5-years American Community Census, that could be needed in the analysis made along with health-related data or as stand-alone. The American Community Survey based on 5-years estimates is, according to U.S Census Bureau, the most reliable, because the samples used are the largest and the data collected cover all country areas, regardless of the population number.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Utah 64 Small Health Statistics Areas" feature layer was developed by the Office of Public Health Assessment, Utah Department of Health using small area analysis methodology in 1997. Each feature was generated by combining a sufficient number of adjacent ZIP code area features to form a geographic area of approximately 33,500 persons (range 15,000 to 62,500). Criteria used for determining which ZIP code areas to combine together to form a Small Health Statistics Area included population size, local health district and county boundaries, similarity of ZIP code population's income level and community political boundaries. Input from local community representatives was used to refine area designations. The Utah 64 Small Health Statistics Areas provide a means of geographically analyzing and presenting health statistics at the community level. Producing information at the small area in Utah provides community planners and other with information that is specific to the populations living in their communities of concern. Small area analysis also allows an investigator to explore ecologic relationships between health status, lifestyle, the environment and the health system. In areas where a ZIP code crosses a county boundary, the 2008 and 2009 versions of Small Statistical Areas honor the ZIP code boundary leading to cases where a Small Statistical Areas can be in multiple counties. The 2012 and 2014 versions correct this issue by splitting ZIP code areas by county boundaries resulting in Small Statistical Areas that can only be found in one county. In the 2017 version, area 57 Grand/San Juan Counties was split into 2 areas, area 57.1 Grand county and 57.2 San Juan County.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Utah Small Health Statistics Areas" feature layer was developed by the Office of Public Health Assessment, Utah Department of Health using the Utah Local Health District and Small Area Designation Algorithm (see https://ibis.health.utah.gov/pdf/resource/Algorithm.pdf). Small Areas are defined based on ZIP Codes, population size, local health district and county boundaries, similarity of ZIP Code area income levels, community political boundaries, and input from local community representatives.
Facebook
TwitterThis dataset contains the weekly estimated influenza risk level for each ZIP Code in Chicago. Estimates are made during flu season, which goes from MMWR week 40 to week 20 of the following year.
The risk level is based on observed level of Influenza-Like Illness (ILI). ILI Activity Level is determined as follows: ILI percentage for each ZIP Code for the week is compared to the mean ILI percentage during the non-influenza months (summer months). Level 1 corresponds to an ILI percentage below the mean, level 2 to an ILI percentage less than one standard deviation (SD) above the mean, level 3 to an ILI percentage more than one, but less than two SDs above mean, and so on, with level 10 corresponding to an ILI percentage more than eight SDs above the mean.
For more information on ESSENCE, which compiles the estimates, see https://www.dph.illinois.gov/data-statistics/syndromic-surveillance
All data are provisional and subject to change. Information is updated as additional details are received. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources.
Facebook
TwitterFind Massachusetts health data by community, county, and region, including population demographics. Build custom data reports with over 100 health and social determinants of health data indicators and explore over 28,000 current and historical data layers in the map room.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Basic Metadata *Rates per 100,000 population. Age-adjusted rates per 100,000 2000 US standard population.
**Blank Cells: Rates not calculated for fewer than 5 events. Rates not calculated in cases where zip code is unknown.
***API: Asian/Pacific Islander. ***AIAN: American Indian/Alaska Native.
Prepared by: County of San Diego, Health & Human Services Agency, Public Health Services, Community Health Statistics Unit, 2019.
Code Source: ICD-9CM - AHRQ HCUP CCS v2015. ICD-10CM - AHRQ HCUP CCS v2018. ICD-10 Mortality - California Department of Public Health, Group Cause of Death Codes 2013; NHCS ICD-10 2e-v1 2017.
Data Guide, Dictionary, and Codebook: https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/phs/CHS/Community%20Profiles/Public%20Health%20Services%20Codebook_Data%20Guide_Metadata_10.2.19.xlsx
Facebook
Twittercolorectal cancer rates in Bronx zip codes for the years 2005-2009. The ZIP Code lists show the number of people who developed the specific type of cancer while living in the ZIP Code area between 2005 and 2009. The lists also show the number of people who might have been expected to get cancer in that time period, based on the size of the population of the ZIP Code. See http://www.health.ny.gov/statistics/cancer/registry/zipcode/faq.htm for more info
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Basic Metadata *Rates per 100,000 population. Age-adjusted rates per 100,000 2000 US standard population.
**Blank Cells: Rates not calculated for fewer than 5 events. Rates not calculated in cases where zip code is unknown.
***API: Asian/Pacific Islander. ***AIAN: American Indian/Alaska Native.
Prepared by: County of San Diego, Health & Human Services Agency, Public Health Services, Community Health Statistics Unit, 2019.
Code Source: ICD-9CM - AHRQ HCUP CCS v2015. ICD-10CM - AHRQ HCUP CCS v2018. ICD-10 Mortality - California Department of Public Health, Group Cause of Death Codes 2013; NHCS ICD-10 2e-v1 2017.
Data Guide, Dictionary, and Codebook: https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/phs/CHS/Community%20Profiles/Public%20Health%20Services%20Codebook_Data%20Guide_Metadata_10.2.19.xlsx
Facebook
TwitterNote: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org. This dataset contains the annual number of hospital discharges, crude hospitalization rates with corresponding 95% confidence intervals, and age-adjusted hospitalization rates with corresponding 95% confidence intervals, for the years 2000 – 2011, by Chicago U.S. Postal Service ZIP code or ZIP code aggregate. See the full description at http://bit.ly/Os5wnn.
Facebook
TwitterNote: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf
Facebook
TwitterThis dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES project by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. It represents a first-of-its kind effort to release information uniformly on this large scale. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. This data only covers the health of adults (people 18 and over) in East Baton Rouge Parish. All estimates lie within a 95% confidence interval.