A 2024 survey found that over half of U.S. individuals indicated the cost of accessing treatment was the biggest problem facing the national healthcare system. This is much higher than the global average of 32 percent and is in line with the high cost of health care in the U.S. compared to other high-income countries. Bureaucracy along with a lack of staff were also considered to be pressing issues. This statistic reveals the share of individuals who said select problems were the biggest facing the health care system in the United States in 2024.
The US Healthcare Visits Statistics dataset includes data about the frequency of healthcare visits to doctor offices, emergency departments, and home visits within the past 12 months in the United States by age, race, Hispanic origin, poverty level, health insurance status, geographic region and other characteristics between 1997 and 2016.
In 2023, there were more than *** incidents of data compromises in the healthcare sector in the United States. Reaching its all-time highest. This indicates a significant growth since 2005 when the industry saw only ** cases of data compromises in the country.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees, Home Health Care Services (CEU6562160001) from Jan 1985 to Jun 2025 about health, establishment survey, education, services, employment, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data was reported at 21.365 % in 2014. This records a decrease from the previous number of 21.927 % for 2013. United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data is updated yearly, averaging 23.966 % from Dec 1995 (Median) to 2014, with 20 observations. The data reached an all-time high of 26.623 % in 1998 and a record low of 21.365 % in 2014. United States US: Out-of-Pocket Health Expenditure: % of Private Expenditure on Health data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Out of pocket expenditure is any direct outlay by households, including gratuities and in-kind payments, to health practitioners and suppliers of pharmaceuticals, therapeutic appliances, and other goods and services whose primary intent is to contribute to the restoration or enhancement of the health status of individuals or population groups. It is a part of private health expenditure.; ; World Health Organization Global Health Expenditure database (see http://apps.who.int/nha/database for the most recent updates).; Weighted average;
This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
This study is the fourth in a series that uses the National Health and Nutrition Examination Survey data to examine the relationship between SNAP participation and indicators of diet quality, nutrition, and health. As in previous studies, this study compares SNAP participants with income-eligible and higher income nonparticipants, by age and gender.
Contains data from World Health Organization's data portal covering various indicators (one per resource).
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Update September 20, 2021: Data and overview updated to reflect data used in the September 15 story Over Half of States Have Rolled Back Public Health Powers in Pandemic. It includes 303 state or local public health leaders who resigned, retired or were fired between April 1, 2020 and Sept. 12, 2021. Previous versions of this dataset reflected data used in the Dec. 2020 and April 2021 stories.
Across the U.S., state and local public health officials have found themselves at the center of a political storm as they combat the worst pandemic in a century. Amid a fractured federal response, the usually invisible army of workers charged with preventing the spread of infectious disease has become a public punching bag.
In the midst of the coronavirus pandemic, at least 303 state or local public health leaders in 41 states have resigned, retired or been fired since April 1, 2020, according to an ongoing investigation by The Associated Press and KHN.
According to experts, that is the largest exodus of public health leaders in American history.
Many left due to political blowback or pandemic pressure, as they became the target of groups that have coalesced around a common goal — fighting and even threatening officials over mask orders and well-established public health activities like quarantines and contact tracing. Some left to take higher profile positions, or due to health concerns. Others were fired for poor performance. Dozens retired. An untold number of lower level staffers have also left.
The result is a further erosion of the nation’s already fragile public health infrastructure, which KHN and the AP documented beginning in 2020 in the Underfunded and Under Threat project.
The AP and KHN found that:
To get total numbers of exits by state, broken down by state and local departments, use this query
KHN and AP counted how many state and local public health leaders have left their jobs between April 1, 2020 and Sept. 12, 2021.
The government tasks public health workers with improving the health of the general population, through their work to encourage healthy living and prevent infectious disease. To that end, public health officials do everything from inspecting water and food safety to testing the nation’s babies for metabolic diseases and contact tracing cases of syphilis.
Many parts of the country have a health officer and a health director/administrator by statute. The analysis counted both of those positions if they existed. For state-level departments, the count tracks people in the top and second-highest-ranking job.
The analysis includes exits of top department officials regardless of reason, because no matter the reason, each left a vacancy at the top of a health agency during the pandemic. Reasons for departures include political pressure, health concerns and poor performance. Others left to take higher profile positions or to retire. Some departments had multiple top officials exit over the course of the pandemic; each is included in the analysis.
Reporters compiled the exit list by reaching out to public health associations and experts in every state and interviewing hundreds of public health employees. They also received information from the National Association of City and County Health Officials, and combed news reports and records.
Public health departments can be found at multiple levels of government. Each state has a department that handles these tasks, but most states also have local departments that either operate under local or state control. The population served by each local health department is calculated using the U.S. Census Bureau 2019 Population Estimates based on each department’s jurisdiction.
KHN and the AP have worked since the spring on a series of stories documenting the funding, staffing and problems around public health. A previous data distribution detailed a decade's worth of cuts to state and local spending and staffing on public health. That data can be found here.
Findings and the data should be cited as: "According to a KHN and Associated Press report."
If you know of a public health official in your state or area who has left that position between April 1, 2020 and Sept. 12, 2021 and isn't currently in our dataset, please contact authors Anna Maria Barry-Jester annab@kff.org, Hannah Recht hrecht@kff.org, Michelle Smith mrsmith@ap.org and Lauren Weber laurenw@kff.org.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Survival To Age 65: Male: % of Cohort data was reported at 81.615 % in 2016. This records an increase from the previous number of 81.372 % for 2015. United States US: Survival To Age 65: Male: % of Cohort data is updated yearly, averaging 73.582 % from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 81.615 % in 2016 and a record low of 63.787 % in 1967. United States US: Survival To Age 65: Male: % of Cohort data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Survival to age 65 refers to the percentage of a cohort of newborn infants that would survive to age 65, if subject to age specific mortality rates of the specified year.; ; United Nations Population Division. World Population Prospects: 2017 Revision.; Weighted average;
The Detailed Mortality - Underlying Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the years 1999-2009. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., region, state, and county), age group (including infants and single-year-of-age cohorts), race (4 groups), Hispanic ethnicity, sex, year of death, and cause-of-death (4-digit ICD-10 code or group of codes, injury intent and mechanism categories, or drug and alcohol related causes), year, month and week day of death, place of death and whether an autopsy was performed. The data are produced by the National Center for Health Statistics.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
Global Big Data in Healthcare Market size is expected to be worth around USD 145.8 Billion by 2033 from USD 42.2 Billion in 2023, growing at a CAGR of 13.2% during the forecast period from 2024 to 2033.
Big data in healthcare encompasses vast amounts of diverse, unstructured data sourced from medical journals, biometric sensors, electronic medical records (EMRs), Internet of Medical Things (IoMT), social media platforms, payer records, omics research, and data repositories. Integrating this unstructured data into traditional systems presents considerable challenges, primarily in data structuring and standardization. Effective data structuring is essential for ensuring compatibility across systems and enabling robust analytical processes.
However, advancements in big data analytics, artificial intelligence, and machine learning have significantly enhanced the ability to convert complex healthcare data into actionable insights. These advancements have transformed healthcare, driving informed decision-making, enabling early and accurate diagnostics, facilitating precision medicine, and enhancing patient engagement through digital self-service platforms, including online portals, mobile applications, and wearable health devices.
The role of big data in pharmaceutical R&D has become increasingly central, as analytics tools streamline drug discovery, accelerate clinical trial processes, and identify potential therapeutic targets more efficiently. The demand for business intelligence solutions within healthcare is rising, fueled by the surge of unstructured data and the focus on developing tailored treatment protocols. As a result, the global market for big data in healthcare is projected to grow steadily during the forecast period.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Expenditures: Healthcare by Income Before Taxes: $20,000 to $29,999 (CXUHEALTHLB0206M) from 1984 to 2015 about healthcare, health, tax, expenditures, income, and USA.
Between January and September 2024, healthcare organizations in the United States saw 491 large-scale data breaches, resulting in the loss of over 500 records. This figure has increased significantly in the last decade. To date, the highest number of large-scale data breaches in the U.S. healthcare sector was recorded in 2023, with a reported 745 cases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate Attributed to Household and Ambient Air Pollution: Age-standardized: Male data was reported at 17.000 NA in 2016. United States US: Mortality Rate Attributed to Household and Ambient Air Pollution: Age-standardized: Male data is updated yearly, averaging 17.000 NA from Dec 2016 (Median) to 2016, with 1 observations. United States US: Mortality Rate Attributed to Household and Ambient Air Pollution: Age-standardized: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Mortality rate attributed to household and ambient air pollution is the number of deaths attributable to the joint effects of household and ambient air pollution in a year per 100,000 population. The rates are age-standardized. Following diseases are taken into account: acute respiratory infections (estimated for all ages); cerebrovascular diseases in adults (estimated above 25 years); ischaemic heart diseases in adults (estimated above 25 years); chronic obstructive pulmonary disease in adults (estimated above 25 years); and lung cancer in adults (estimated above 25 years).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
From the Web site:
Our mission is to provide a wide variety of health and health-related information to help policymakers, advocates and individuals understand a population’s health in a holistic, inclusive manner. The diverse set of measures included in America’s Health Rankings® reflect our belief that “health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity” (World Health Organization Charter).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Number of Death: Under-5 data was reported at 26,867.000 Person in 2017. This records a decrease from the previous number of 26,971.000 Person for 2016. United States US: Number of Death: Under-5 data is updated yearly, averaging 45,277.500 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 127,104.000 Person in 1960 and a record low of 26,867.000 Person in 2017. United States US: Number of Death: Under-5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Number of children dying before reaching age five.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Sum;
Age-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents). Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.
The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of Covid-19 on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely weekly estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, gender, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.
A 2024 survey found that over half of U.S. individuals indicated the cost of accessing treatment was the biggest problem facing the national healthcare system. This is much higher than the global average of 32 percent and is in line with the high cost of health care in the U.S. compared to other high-income countries. Bureaucracy along with a lack of staff were also considered to be pressing issues. This statistic reveals the share of individuals who said select problems were the biggest facing the health care system in the United States in 2024.