Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains state-wise National Family Health Survey (NFHS) compiled data on various family planning, childbirth, population, medical, health and other parameters which provide statistical indicators data on family profile and health status in India. There are 100+ indicators covered in the survey which broadly fall in the following categories: Health and Wellness, Maternal and Child Health, Family Planning and Reproductive Health, Disease Screening and Prevention, Social and Economic Factors, General Healthcare and Treatment
The different types of health data contained in the dataset include Anaemia among women and children, blood sugar levels and hypertension among men and women, tobacco and alcohol consumption among adults, delivery care and child feeding practices of women, quality of family planning services, screening of cancer among women, marriage and family, maternity care, nutritional status of women, child vaccinations and vitamin A supplementation, treatment of childhood diseases, etc.
Within these categories of health data, the dataset contains indicators data such as births attended by skilled health care professionals and caesarean section, number of children with under and heavy weight, stunted growth, their different vaccations status, male and female sterilization, consumption of iron folic acid among mothers, mother who had antenatal, postnatal, neonatal services, women who are obese and at the risk of weight to hip ratio, educational status among women and children, sanitation, birth and sex ratio, etc.
All of the data is compiled from the NFHS 4th and 5th survey reports. The The NFHS is a collaborative project of the International Institute for Population Sciences(IIPS), aimed at providing health data to strengthen India's health policies and programmes.
There are 100+ indicators covered in the survey which broadly fall in the following categories: Health and Wellness, Maternal and Child Health, Family Planning and Reproductive Health, Disease Screening and Prevention, Social and Economic Factors, General Healthcare and Treatment
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Key aspects covered in the dataset include:
This dataset is valuable for researchers, and policymakers interested in student well-being, mental health, and academic success.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data are the part of the two National Health Surveys in the Republic of Serbia, conducted in 2006 and 2013, funded by the Ministry of Health. The survey was conducted in accordance with the methodology and instruments of the European Health Interview Survey wave 2. Both surveys were conducted as cross sectional studies. Population presented in the research included adults, aged 19 and more. The researches excluded people living on the territory of Kosovo and Metohija, as well as people with residence addresses in Special institutions (retirement homes, prisons, psychiatric clinics). Data on basic characteristics of the interviewees, health condition of the interviewees, using hospital and non-hospital health care services and prevention check-ups and unachieved need for health care was obtained through a face-to-face interview carried out at home, while information at the level of the household was obtained by means of a household questionnaire. The questions were validated instruments based on the standard questionnaires from similar types of surveys.
Facebook
TwitterThe World Health Survey was implemented by WHO in 2002–2004 in partnership with 70 countries to generate information on the health of adult populations and health systems. The total sample size in these cross-sectional studies includes over 300,000 individuals. Survey materials and data are available through the WHO World Health Survey Data Archive accessible from the WHS webpage. (From the WHO World Health Survey webpage).
Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A free synthetic dataset of mental health survey responses, designed for LLM training, AI research, and synthetic data generation.
It captures stress levels, coping strategies, mood swings, and work-life interactions across diverse demographics.
All entries are fully synthetic, privacy-safe, and structured for easy modeling and analysis.
Ideal for developing AI models, visualizations, or fine-tuning LLMs on structured mental health data.
This dataset contains synthetic survey responses covering mental health, lifestyle, and work-related factors.
It is suitable as a dataset for LLM training, dataset for mental health research, and experimentation with free synthetic datasets.
| Column | Description |
|---|---|
Timestamp | Date and time of survey response |
Gender | Respondent gender |
Country | Respondent country |
Occupation | Profession or role |
self_employed | Whether respondent is self-employed |
family_history | Family history of mental health issues |
treatment | Whether respondent has sought treatment |
Days_Indoors | Average number of days indoors |
Growing_Stress | Respondent perception of stress growth |
Changes_Habits | Whether lifestyle habits have changed |
Mental_Health_History | Past mental health history |
Mood_Swings | Frequency of mood swings |
Coping_Struggles | Difficulty in coping |
Work_Interest | Level of engagement at work |
Social_Weakness | Social interaction challenges |
mental_health_interview | Respondent willingness for interview |
care_options | Preferred care options |
--
Synthetic Data Generator: Generate your own structured datasets
Open Generator
Syncora.ai: Platform powering the synthetic dataset
Visit Website
Released under MIT License.
This dataset is 100% synthetic, free, and safe for dataset for LLM training, dataset for mental health research, and synthetic data experiments.
Facebook
TwitterThe New York City Community Health Survey (CHS) is a telephone survey conducted annually by the DOHMH, Division of Epidemiology, Bureau of Epidemiology Services. CHS provides robust data on the health of New Yorkers, including neighborhood, borough, and citywide estimates on a broad range of chronic diseases and behavioral risk factors. The data are analyzed and disseminated to influence health program decisions, and increase the understanding of the relationship between health behavior and health status. For more information see EpiQuery, https://a816-health.nyc.gov/hdi/epiquery/visualizations?PageType=ps&PopulationSource=CHS
Facebook
TwitterThe primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.
National coverage
The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.
Sample survey data [ssd]
The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).
The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.
Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.
For further details on sample design, see Appendix B of the final report.
Face-to-face [f2f]
The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.
All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.
Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.
In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix D of the survey final report.
Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Facebook
TwitterThe National Family & Health Survey (NFHS) is a survey in India that attempts to collect information on health conditions, nutrition, family planning, domestic violence, and a host of other factors through conducting surveys on a random ("representative") sample of Indian households in all states. The fifth NFHS was conducted through 2019-21, and the reports were released to the public in 2021 and can be found at this link. The original data was released as PDFs; this Kaggle dataset was created by extracting the tabular data from PDFs into JSONs.
Here's a non-comprehensive list of some indicators collected by this survey:
Major news outlets in India analysed the results of the study too - here are some interesting articles that show what sorts of "stories" or insights you van look for in this data:
Note: I used a Python script to parse the data automatically. I tried my best to make sure the data was parsed correctly, but there is a possibility that some data in JSON might not be 100% accurate - there is no way I could have manually verified all 704 PDF files and their outputs, so I randomly sampled and verified a couple of files, all of which looked okay. If you want to see the scripts used to parse this PDFs, please visit my GitHub repo.
Dataset cover photo by Naveed Ahmed on Unsplash.com
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
2003-2015. Global School dataset. The Global School-based Student Health Survey (GSHS) was developed by the World Health Organization (WHO) in collaboration with the United Nations' UNICEF, UNESCO, and UNAIDS; and with technical assistance from CDC. The GSHS is a school-based survey conducted primarily among students aged 13-17 years in countries around the world. It uses core questionnaire modules that address the leading causes of morbidity and mortality among children and adults worldwide: 1) Alcohol use, 2) dietary behaviors, 3) drug use, 4) hygiene, 5) mental health, 6) physical activity, 7) protective factors, 8) sexual behaviors that contribute to HIV infection, other sexually-transmitted infections, and unintended pregnancy, 9) tobacco use, and 10) violence and unintentional injury. This dataset contains global data from 2003 – 2015. Additional information about the GSHS can be found at https://www.cdc.gov/gshs/index.htm.
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The National Family Health Survey (NFHS) is a large-scale, multi-round survey conducted in a representative sample of households throughout India. The survey is conducted by the Ministry of Health and Family Welfare, in collaboration with the International Institute for Population Sciences (IIPS) and other partner organizations. The NFHS is conducted periodically and provides important information on a wide range of health and social indicators, such as fertility, infant and child mortality, maternal and child health, nutrition, family planning, HIV/AIDS, and other health-related issues. The survey is designed to provide reliable data at the national, state, and district levels, and the results are widely used by policymakers, researchers, and program managers to inform policy and programs related to health and development.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
The Health Survey for England (HSE) is part of a programme of surveys commissioned by the Health and Social Care Information Centre. It has been carried out since 1994 by the Joint Health Surveys Unit of NatCen Social Research and the Research Department of Epidemiology and Public Health at UCL (University College London). The study provides regular information that cannot be obtained from other sources on a range of aspects concerning the public's health and many of the factors that affect health. The series of Health Surveys for England was designed to monitor trends in the nation's health, to estimate the proportion of people in England who have specified health conditions, and to estimate the prevalence of certain risk factors and combinations of risk factors associated with these conditions. The survey is also used to monitor progress towards selected health targets. Each survey in the series includes core questions and measurements (such as blood pressure, anthropometric measurements and analysis of blood and saliva samples), as well as modules of questions on specific issues that vary from year to year. In some years, the core sample has also been augmented by an additional boosted sample from a specific population subgroup, such as minority ethnic groups, older people or children; there was no boost in 2012. This is the 22nd annual Health Survey for England. All surveys have covered the adult population aged 16 and over living in private households in England. Since 1995, the surveys have included children who live in households selected for the survey; children aged 2-15 were included from 1995, and infants under two years old were added in 2001. Those living in institutions were outside the scope of the survey. This should be borne in mind when considering survey findings, since the institutional population is likely to be older and less healthy than those living in private households. The HSE in 2012 provided a representative sample of the population at both national and regional level. 9,024 addresses were randomly selected in 564 postcode sectors, issued over twelve months from January to December 2012. Where an address was found to have multiple dwelling units, a random selection was made and a single dwelling unit was included. Where there were multiple households at a dwelling unit, again one was selected at random. All adults and children in selected households were eligible for inclusion in the survey. Where there were three or more children aged 0-15 in a household, two of the children were selected at random to limit the respondent burden for parents. A nurse visit was arranged for all participants who consented. A total of 8,291 adults and 2,043 children were interviewed. A household response rate of 64 per cent was achieved. 5,470 adults and 1,203 children had a nurse visit. It should be noted that, as in 2011, there was no child boost sample in 2012. Thus the scope for analyses of some data for children may be limited by relatively small sample sizes.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
The Health Survey for England series was designed to monitor trends in the nation's health; estimating the proportion of people in England who have specified health conditions, and the prevalence of risk factors and behaviours associated with these conditions. The surveys provide regular information that cannot be obtained from other sources. The surveys have been carried out since 1994 by the Joint Health Surveys Unit of NatCen Social Research and the Research Department of Epidemiology and Public Health at UCL. Each survey in the series includes core questions, e.g. about alcohol and smoking, and measurements (such as blood pressure, height and weight, and analysis of blood and saliva samples), and modules of questions on topics that vary from year to year. The trend tables show data for available years between 1993 and 2016 for adults (defined as age 16 and over) and for children. The survey samples cover the population living in private households in England. In 2016 the sample contained 8,011 adults and 2,056 children and 5,049 adults and 1,117 children had a nurse visit. We would very much like your feedback about whether some proposed changes to the publications would be helpful and if the publications meet your needs. This will help us shape the design of future publications to ensure they remain informative and useful. Please answer our reader feedback survey on Citizen Space which is open until 18 June 2018.
Facebook
TwitterThe main objective of a demographic household survey (DHS) is to provide estimates of a number of basic demographic and health variables. This is done through interviews with a scientifically selected probability sample that is chosen from a well-defined population.
The 2007 Nauru Demographic and Health Survey (2007 NDHS) was one of four pilot demographic and health surveys conducted in the Pacific under an Asian Development Bank ADB/ Secretariat of the Pacific Community (SPC) Regional DHS Pilot Project. The primary objective of this survey was to provide up-to-date information for policy-makers, planners, researchers and programme managers, for use in planning, implementing, monitoring and evaluating population and health programmes within the country. The survey was intended to provide key estimates of Nauru's demographics and health situation. The findings of the 2007 NDHS are very important in measuring the achievements of family planning and other health programmes. To ensure better understanding and use of these data, the results of this survey should be widely disseminated at different planning levels. Different dissemination techniques will be used to reach different segments of society.
The primary purpose of the 2007 NDHS was to furnish policy-makers and planners with detailed information on fertility, family planning, infant and child mortality, maternal and child health, nutrition, and knowledge of HIV and AIDS and other sexually transmitted infections.
NOTE: The only dissemination used was wide distribution of the report. A planned data use workshop was not undertaken. Hence there is some misconceptions and lack of awareness on the results obtained from the survey. The report is provided on the NBOS website free for download.
National Coverage - Districts
The survey covered all household members (usual residents), - All children (aged 0-14 years) resident in the household - All women of reproductive age (15-49 years) resident in all household - All males (15yrs and above) in every second household (approx. 50%) resident in selected household
Results: The 2007 Nauru Demographic Health Survey (2007 NDHS) is a nationally representative survey of 655 eligible women (aged 15-49) and 392 eligible men (aged 15 and above).
Sample survey data [ssd]
IDG NOTES: Locate sampling documentation with SPC (Graeme Brown) and internal files. Add in this sections. Or second option dilute appendix A Sampling and extract key issues.
ESTIMATES OF SAMPLING ERRORS - Refer to Appendix A of final NDHS2007 report or; - External Resources - 2007 DHS- Appendix A and B Sampling (to be created separatedly by IDG progress ongoing)
IDG NOTES: Locate sampling documentation with Macro and internal files. Add in this section. Or second option dilute appendix B Sampling and extract key issues.
ESTIMATES OF SAMPLING ERRORS - Refer to Appendix B of final NDHS2007 report or;
Extract:
In the 2007 NDHS Report of the survey results, sampling errors for selected variables have been presented in a tabular format. The sampling error tables should include:
.. Variable name
R: Value of the estimate; SE: Sampling error of the estimate; N: Unweighted number of cases on which the estimate is based; WN: Weighted number of cases; DEFT: Design effect value that compensates for the loss of precision that results from using cluster rather than simple random sampling; SE/R: Relative standard error (i.e. ratio of the sampling error to the value estimate); R-2SE: Lower limit of the 95% confidence interval; R+2SE: Upper limit of the 95% confidence interval (never >1.000 for a proportion).
Face-to-face [f2f]
DHS questionnaire for women cover the following sections:
The men's questionnaire covers the same except for sections 4, 5, 6 which are not applicable to men.
It was also recognized that some countries have a need for special information that is not contained in the core questionnaire. Separate questionnaire modules were developed on a series of topics. These topics are optional and include:
The Papua New Guinea (PNG) questionnaire was proposed for Nauru to adapt as in comparison to the existing DHS model, this is not as lengthy and time-consuming. The PNG questionnaire also dealt with high incidence of alcohol and tobacco in Nauru. Questions on HIV/AIDS and STI knowledge were included in the men's questionnaire where it was not included in the PNG questionnaire.
IDG NOTES: Locate response rate documentation with SPC (Graeme Brown) and internal files. Add in this sections.
Facebook
Twittersflagg/Kaggle-Mental-Health-Survey-Data dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterThis survey was designed as a continuation of the long-running adult dental health surveys, carried out in the United Kingdom since 1968. The current release only applies to England.
The first suite of reports from this survey were published in December 2022 and focussed on the impact of COVID-19 on access to dental care. That page includes a technical report to accompany this survey.
This survey release includes data on the:
self-reported state of respondents’ teeth and mouth
impacts of oral health
usual patterns of dental attendance
The survey was carried out in February and March 2021 with a representative sample of adults aged 16 years and over.
Future surveys will include a dental examination of respondents.
If you have any queries about this report or would like a copy of the questionnaire, please email dentalpublichealth@dhsc.gov.uk.
Facebook
TwitterThe surveys provide regular information that cannot be obtained from other sources on a range of aspects concerning the public’s health. The surveys have been carried out since 1994 by the Joint Health Surveys Unit of NatCen Social Research and the Research Department of Epidemiology and Public Health at UCL. The topics covered include obesity and overweight, smoking; alcohol, general health; long-standing illness; fruit and vegetable consumption; the prevalence of diabetes (doctor diagnosed and undiagnosed), hypertension (treated and untreated) and cardio-vascular disease and prevalence of chronic pain.
Facebook
TwitterThe New York City Community Mental Health Survey (CMHS) was a one-time telephone survey conducted by the DOHMH. The CMHS was conducted in conjunction with the annual 2012 Community health Survey (CHS). The CMHS provides robust data on the mental health of New Yorkers, including neighborhood, borough, and citywide estimates. The data are analyzed and disseminated to influence mental health program decisions, and increase the understanding of the mental health among New Yorkers.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
The Health Survey for England (HSE) monitors trends in the nation’s health and care. It provides information about adults aged 16 and over, and children aged 0 to 15, living in private households in England. The survey consists of an interview, followed by a visit from a nurse who takes some measurements and blood and saliva samples. Adults and children aged 13 to 15 were interviewed in person, and parents of children aged 0 to 12 answered on behalf of their children for many topics. Children aged 8 to 15 filled in a self-completion booklet about their drinking and smoking behaviour. A total of 8,178 adults (aged 16 and over) and 2,072 children (aged 0 to 15) were interviewed in the 2018 survey. 4,825 adults and 1,103 children had a nurse visit. Each survey in the series includes core questions, and measurements such as blood pressure, height and weight measurements and analysis of blood and saliva samples. In addition there are modules of questions on specific topics that vary from year to year. The detailed reports with supporting Excel tables can be found at the bottom of this page and comprise the following topics: Overweight and obesity in adults and children Asthma Adult's health-related behaviours (includes smoking, alcohol, fruit and vegetable consumption, physical activity and gambling) Longstanding conditions Adults' health (including diabetes, hypertension, and high cholesterol) Childrens' health (includes smoking, alcohol, and fruit and vegetable consumption) Social care in older adults _ This publication was updated on 31st January 2020. See the data quality statement attached to this page for more information.
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains state-wise National Family Health Survey (NFHS) compiled data on various family planning, childbirth, population, medical, health and other parameters which provide statistical indicators data on family profile and health status in India. There are 100+ indicators covered in the survey which broadly fall in the following categories: Health and Wellness, Maternal and Child Health, Family Planning and Reproductive Health, Disease Screening and Prevention, Social and Economic Factors, General Healthcare and Treatment
The different types of health data contained in the dataset include Anaemia among women and children, blood sugar levels and hypertension among men and women, tobacco and alcohol consumption among adults, delivery care and child feeding practices of women, quality of family planning services, screening of cancer among women, marriage and family, maternity care, nutritional status of women, child vaccinations and vitamin A supplementation, treatment of childhood diseases, etc.
Within these categories of health data, the dataset contains indicators data such as births attended by skilled health care professionals and caesarean section, number of children with under and heavy weight, stunted growth, their different vaccations status, male and female sterilization, consumption of iron folic acid among mothers, mother who had antenatal, postnatal, neonatal services, women who are obese and at the risk of weight to hip ratio, educational status among women and children, sanitation, birth and sex ratio, etc.
All of the data is compiled from the NFHS 4th and 5th survey reports. The The NFHS is a collaborative project of the International Institute for Population Sciences(IIPS), aimed at providing health data to strengthen India's health policies and programmes.
There are 100+ indicators covered in the survey which broadly fall in the following categories: Health and Wellness, Maternal and Child Health, Family Planning and Reproductive Health, Disease Screening and Prevention, Social and Economic Factors, General Healthcare and Treatment