Facebook
TwitterThe Demographic and Health Surveys (DHS) Program overseen by the US Agency for International AID (USAID) uses nationally representative surveys, biomarker testing, and geographic location to collect data on monitoring and impact evaluation indicators for individual countries and for cross-country comparisons.
Standardized DHS surveys include the Demographic and Health Survey, Service Provision Assessment, HIV/AIDS Indicator Survey, Malaria Indicator Survey, and Key Indicators Survey. The DHS Program also collects biomarkers and geographic data. Data availability varies by year and country. A table that lists all currently available data can be found here.
Facebook
TwitterThe main objective of a demographic household survey (DHS) is to provide estimates of a number of basic demographic and health variables. This is done through interviews with a scientifically selected probability sample that is chosen from a well-defined population.
The 2007 Nauru Demographic and Health Survey (2007 NDHS) was one of four pilot demographic and health surveys conducted in the Pacific under an Asian Development Bank ADB/ Secretariat of the Pacific Community (SPC) Regional DHS Pilot Project. The primary objective of this survey was to provide up-to-date information for policy-makers, planners, researchers and programme managers, for use in planning, implementing, monitoring and evaluating population and health programmes within the country. The survey was intended to provide key estimates of Nauru's demographics and health situation. The findings of the 2007 NDHS are very important in measuring the achievements of family planning and other health programmes. To ensure better understanding and use of these data, the results of this survey should be widely disseminated at different planning levels. Different dissemination techniques will be used to reach different segments of society.
The primary purpose of the 2007 NDHS was to furnish policy-makers and planners with detailed information on fertility, family planning, infant and child mortality, maternal and child health, nutrition, and knowledge of HIV and AIDS and other sexually transmitted infections.
NOTE: The only dissemination used was wide distribution of the report. A planned data use workshop was not undertaken. Hence there is some misconceptions and lack of awareness on the results obtained from the survey. The report is provided on the NBOS website free for download.
Version 1.0
DHS questionnaire for women cover the following sections:
The men's questionnaire covers the same except for sections 4, 5, 6 which are not applicable to men.
It was also recognized that some countries have a need for special information that is not contained in the core questionnaire. Separate questionnaire modules were developed on a series of topics. These topics are optional and include:
consanguinity
Collection start: 2007
Collection end: 2007
Facebook
TwitterThe 2016 Timor-Leste Demographic and Health Survey (TLDHS) was implemented by the General Directorate of Statistics (GDS) of the Ministry of Finance in collaboration with the Ministry of Health (MOH). Data collection took place from 16 September to 22 December, 2016.
The primary objective of the 2016 TLDHS project is to provide up-to-date estimates of basic demographic and health indicators. The TLDHS provides a comprehensive overview of population, maternal, and child health issues in Timor-Leste. More specifically, the 2016 TLDHS: • Collected data at the national level, which allows the calculation of key demographic indicators, particularly fertility, and child, adult, and maternal mortality rates • Provided data to explore the direct and indirect factors that determine the levels and trends of fertility and child mortality • Measured the levels of contraceptive knowledge and practice • Obtained data on key aspects of maternal and child health, including immunization coverage, prevalence and treatment of diarrhea and other diseases among children under age 5, and maternity care, including antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and collected anthropometric measures to assess nutritional status in children, women, and men • Tested for anemia in children, women, and men • Collected data on the knowledge and attitudes of women and men about sexually-transmitted diseases and HIV/AIDS, potential exposure to the risk of HIV infection (risk behaviors and condom use), and coverage of HIV testing and counseling • Measured key education indicators, including school attendance ratios, level of educational attainment, and literacy levels • Collected information on the extent of disability • Collected information on non-communicable diseases • Collected information on early childhood development • Collected information on domestic violence • The information collected through the 2016 TLDHS is intended to assist policy makers and program managers in evaluating and designing programs and strategies for improving the health of the country’s population.
National
The survey covered all de jure household members (usual residents), women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The sampling frame used for the TLDHS 2016 survey is the 2015 Timor-Leste Population and Housing Census (TLPHC 2015), provided by the General Directorate of Statistics. The sampling frame is a complete list of 2320 non-empty Enumeration Areas (EAs) created for the 2015 population census. An EA is a geographic area made up of a convenient number of dwelling units which served as counting units for the census, with an average size of 89 households per EA. The sampling frame contains information about the administrative unit, the type of residence, the number of residential households and the number of male and female population for each of the EAs. Among the 2320 EAs, 413 are urban residence and 1907 are rural residence.
There are five geographic regions in Timor-Leste, and these are subdivided into 12 municipalities and special administrative region (SAR) of Oecussi. The 2016 TLDHS sample was designed to produce reliable estimates of indicators for the country as a whole, for urban and rural areas, and for each of the 13 municipalities. A representative probability sample of approximately 12,000 households was drawn; the sample was stratified and selected in two stages. In the first stage, 455 EAs were selected with probability proportional to EA size from the 2015 TLPHC: 129 EAs in urban areas and 326 EAs in rural areas. In the second stage, 26 households were randomly selected within each of the 455 EAs; the sampling frame for this household selection was the 2015 TLPHC household listing available from the census database.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used for the 2016 TLDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Timor-Leste.
The data processing operation included registering and checking for inconsistencies, incompleteness, and outliers. Data editing and cleaning included structure and consistency checks to ensure completeness of work in the field. The central office also conducted secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by two staff who took part in the main fieldwork training. Data editing was accomplished with CSPro software. Secondary editing and data processing were initiated in October 2016 and completed in February 2017.
A total of 11,829 households were selected for the sample, of which 11,660 were occupied. Of the occupied households, 11,502 were successfully interviewed, which yielded a response rate of 99 percent.
In the interviewed households, 12,998 eligible women were identified for individual interviews. Interviews were completed with 12,607 women, yielding a response rate of 97 percent. In the subsample of households selected for the men’s interviews, 4,878 eligible men were identified and 4,622 were successfully interviewed, yielding a response rate of 95 percent. Response rates were higher in rural than in urban areas, with the difference being more pronounced among men (97 percent versus 90 percent, respectively) than among women (98 percent versus 94 percent, respectively). The lower response rates for men were likely due to their more frequent and longer absences from the household.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TLDHS 2016 to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TLDHS 2016 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TLDHS 2016 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TLDHS 2016 is a SAS program. This program used the Taylor linearization method of variance estimation for survey estimates that are means, proportions or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Height and weight data completeness and quality for children - Completeness of information on siblings - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends
See details of the data quality tables in Appendix C of the survey final report.
Facebook
Twitterhttps://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains state-wise National Family Health Survey (NFHS) compiled data on various family planning, childbirth, population, medical, health and other parameters which provide statistical indicators data on family profile and health status in India. There are 100+ indicators covered in the survey which broadly fall in the following categories: Health and Wellness, Maternal and Child Health, Family Planning and Reproductive Health, Disease Screening and Prevention, Social and Economic Factors, General Healthcare and Treatment
The different types of health data contained in the dataset include Anaemia among women and children, blood sugar levels and hypertension among men and women, tobacco and alcohol consumption among adults, delivery care and child feeding practices of women, quality of family planning services, screening of cancer among women, marriage and family, maternity care, nutritional status of women, child vaccinations and vitamin A supplementation, treatment of childhood diseases, etc.
Within these categories of health data, the dataset contains indicators data such as births attended by skilled health care professionals and caesarean section, number of children with under and heavy weight, stunted growth, their different vaccations status, male and female sterilization, consumption of iron folic acid among mothers, mother who had antenatal, postnatal, neonatal services, women who are obese and at the risk of weight to hip ratio, educational status among women and children, sanitation, birth and sex ratio, etc.
All of the data is compiled from the NFHS 4th and 5th survey reports. The The NFHS is a collaborative project of the International Institute for Population Sciences(IIPS), aimed at providing health data to strengthen India's health policies and programmes.
There are 100+ indicators covered in the survey which broadly fall in the following categories: Health and Wellness, Maternal and Child Health, Family Planning and Reproductive Health, Disease Screening and Prevention, Social and Economic Factors, General Healthcare and Treatment
Facebook
TwitterThe Egypt Demographic and Health Survey (2008 EDHS) is the latest in a series of a nationally representative population and health surveys conducted in Egypt. The 2008 EDHS was conducted under the auspices of the Ministry of Health (MOH) and implemented by El-Zanaty & Associates. Technical support for the 2008 EDHS was provided by Macro International through the MEASURE DHS project. MEASURE DHS is sponsored by the U.S. Agency for International Development (USAID) to assist countries worldwide in conducting surveys to obtain information on key population and health indicators.
The 2008 EDHS was undertaken to provide estimates for key population indicators including fertility, contraceptive use, infant and child mortality, immunization levels, coverage of antenatal and delivery care, maternal and child health, and nutrition. In addition, the survey was designed to provide information on a number of health topics and on the prevalence of hepatitis C and high blood pressure among the population age 15-59 years. The survey results are intended to assist policymakers and planners in assessing the current health and population programs and in designing new strategies for improving reproductive health and health services in Egypt.
National
Sample survey data
The primary objective of the sample design for the 2008 EDHS was to provide estimates of key population and health indicators including fertility and child mortality rates for the country as a whole and for six major administrative regions ( Urban Governorates, urban Lower Egypt, rural Lower Egypt, urban Upper Egypt, rural Upper Egypt, and the Frontier Governorates). In the Urban Governorates, Lower Egypt, and Upper Egypt, the 2008 EDHS design allowed for governorate-level estimates of most of the key variables, with the exception of the fertility and mortality rates. In the Frontier Governorates, the sample size was not sufficiently large to provide separate estimates for the individual governorates. To meet the survey objectives, the number of households selected in the 2008 EDHS sample from each governorate was not proportional to the size of the population in the governorate. As a result, the 2008 EDHS sample is not self-weighting at the national level, and weights have to be applied to the data to obtain the national-level estimates.
The sample for the 2008 EDHS was selected in three stages. The first stage included selecting the primary sampling units. The units of selection were shiakhas/towns in urban areas and villages in rural areas. A list of these units which was based on the 2006 census was obtained from CAPMAS, and this list was used in selecting the primary sampling units (PSUs). Prior to the selection of the PSUs, the frame was further reviewed to identify any administrative changes that had occurred after the 2006 Census. The updating process included both office work and field visits for a period of around 2 months. After it was completed, urban and rural units were separately stratified by geographical location in a serpentine order from the northwest corner to the southeast corner within each governorate. During this process, shiakhas or villages with a population less than 2,500 were grouped with contiguous shiakhas or villages (usually within the same kism or marquez) to form units with a population of at least 5,000. After the frame was ordered, a total of 610 primary sampling units (275 shiakhas/towns and 335 villages) were selected.
The second stage of selection involved several steps. First, detailed maps of the PSUs chosen during the first stage were obtained and divided into parts of roughly equal population size (about 5,000). In shiakhas/towns or villages with a population of 100,000 or more, three parts were selected, two parts were selected from PSU's with population 20,000 or more (and less than 100,000). In the remaining smaller shiakhas/towns or villages, only one part was selected. Overall, a total of 998 parts were selected from the shiakhas/towns and villages in the 2008 EDHS sample.
A quick count was then carried out to provide an estimate of the number of households in each part. This information was needed to divide each part into standard segments of about 200 households. A group of 48 experienced field workers participated in the quick count operation. They were organized into 15 teams, each consisting of 1 supervisor, 1 cartographer and 1 counter. A one-week training course conducted prior to the quick count included both classroom sessions and two field practices in a shiakha/town and a village not covered in the survey. The quick-count operation took place between the end of October 2007 and end of December 2007.
As a quality control measure, the quick count was repeated in 10 percent of the parts. If the difference between the results of the first and second quick count was less than 2 percent, then the first count was accepted. No major discrepancies were found between the two counts in most of the areas for which the count was repeated.
After the quick count, a total of 1,267 segments were chosen from the parts in each shiakha/ town and village in the 2008 EDHS sample (i.e., two segments were selected from 561 PSUs and three segments from 48 PSUs and one segment from one PSU). A household listing operation was then implemented in each of the selected segments. To conduct this operation, 14 supervisors and 28 listers were organized into 14 teams. Generally, each listing team consisted of a supervisor and two listers. A one-week training course for the listing staff was held at the beginning of January 2008. The training involved classroom lectures and two days of field practice in three urban and rural locations not covered in the survey. The listing operation took place during a six-week period, beginning immediately after the training.
About 10 percent of the segments were relisted. Two criteria were used to select segments for relisting. First, segments were relisted when the number of households in the listing differed markedly from that expected according to the quick count information. Second, a number of segments were randomly selected to be relisted as an additional quality control test. Overall, the discrepancies found in comparisons of the listings were not major.
The third stage involved selecting the household sample. Using the household listing for each segment, a systematic random sample of households was selected for the 2008 EDHS sample. All evermarried women 15-49 who were present in the sampled households on the night before the survey team visited were eligible for the main DHS interview. In addition, in a subsample of one-quarter of the households in each segment, all women and men age 15-59 who were present in the household on the night before the interview were eligible for the health issues interviews and the hepatitis C testing.
Note: See detailed description of the sample design in Appendix B of the survey report.
Face-to-face
Three questionnaires were used in the 2008 EDHS: a household questionnaire, an ever-married woman questionnaire, and a health issues questionnaire. The household and ever-married woman’s questionnaires were based on the questionnaires that had been used in earlier EDHS surveys and on model survey instruments developed in the MEASURE DHS program. The majority of the content of the health issues questionnaire was developed especially for the 2008 EDHS although some sections (e.g., the questions on female circumcision and HIV/AIDS knowledge and attitudes) were also based on questionnaires used in earlier EDHS surveys or were drawn from the model instruments from the MEASURE DHS program. The questionnaires were developed in English and translated into Arabic.
The first part of the household questionnaire was used to enumerate all usual members and visitors to the selected households and to collect information on the age, sex, marital status, educational attainment, and relationship to the household head of each household member or visitor. This information provided basic demographic data for Egyptian households. It was also used to identify the women who were eligible for the individual interview (i.e., ever-married women 15-49) as well as individuals eligible for the special health issues interviews and the hepatitis testing subsample. In the second part of the household questionnaire, there were questions relating to the socioeconomic status of the household including questions on housing characteristics (e.g., the number of rooms, the flooring material, the source of water and the type of toilet facilities) and on ownership of a variety of consumer goods. A special module was included in the household questionnaire on ownership of poultry and birds. In addition, height and weight measurements of respondents, youth, and children under age six were taken during the survey and recorded in the household questionnaire. The informed consent for the hepatitis C testing obtained from eligible respondents age 15-59 was also recorded in the household questionnaire.
The woman’s questionnaire was administered to all ever-married women age 15-49 who were usual residents or who were present in the household during the night before the interviewer’s visit. It obtained information on the following topics: • Respondent’s background • Reproduction • Contraceptive knowledge and use • Fertility preferences and attitudes about family planning • Pregnancy and breastfeeding • Immunization and child health • Husband’s background and
Facebook
TwitterThe 2013 NDHS is part of the worldwide Demographic and Health Surveys (DHS) programme funded by the United States Agency for International Development (USAID). DHS surveys are designed to collect data on fertility, family planning, and maternal and child health; assist countries in monitoring changes in population, health, and nutrition; and provide an international database that can be used by researchers investigating topics related to population, health, and nutrition.
The overall objective of the survey is to provide demographic, socioeconomic, and health data necessary for policymaking, planning, monitoring, and evaluation of national health and population programmes. In addition, the survey measured the prevalence of anaemia, HIV, high blood glucose, and high blood pressure among adult women and men; assessed the prevalence of anaemia among children age 6-59 months; and collected anthropometric measurements to assess the nutritional status of women, men, and children.
A long-term objective of the survey is to strengthen the technical capacity of local organizations to plan, conduct, and process and analyse data from complex national population and health surveys. At the global level, the 2013 NDHS data are comparable with those from a number of DHS surveys conducted in other developing countries. The 2013 NDHS adds to the vast and growing international database on demographic and health-related variables.
National coverage
Sample survey data [ssd]
Sample Design The primary focus of the 2013 NDHS was to provide estimates of key population and health indicators, including fertility and mortality rates, for the country as a whole and for urban and rural areas. In addition, the sample was designed to provide estimates of most key variables for the 13 administrative regions.
Each of the administrative regions is subdivided into a number of constituencies (with an overall total of 107 constituencies). Each constituency is further subdivided into lower level administrative units. An enumeration area (EA) is the smallest identifiable entity without administrative specification, numbered sequentially within each constituency. Each EA is classified as urban or rural. The sampling frame used for the 2013 NDHS was the preliminary frame of the 2011 Namibia Population and Housing Census (NSA, 2013a). The sampling frame was a complete list of all EAs covering the whole country. Each EA is a geographical area covering an adequate number of households to serve as a counting unit for the population census. In rural areas, an EA is a natural village, part of a large village, or a group of small villages; in urban areas, an EA is usually a city block. The 2011 population census also produced a digitised map for each of the EAs that served as the means of identifying these areas.
The sample for the 2013 NDHS was a stratified sample selected in two stages. In the first stage, 554 EAs-269 in urban areas and 285 in rural areas-were selected with a stratified probability proportional to size selection from the sampling frame. The size of an EA is defined according to the number of households residing in the EA, as recorded in the 2011 Population and Housing Census. Stratification was achieved by separating every region into urban and rural areas. Therefore, the 13 regions were stratified into 26 sampling strata (13 rural strata and 13 urban strata). Samples were selected independently in every stratum, with a predetermined number of EAs selected. A complete household listing and mapping operation was carried out in all selected clusters. In the second stage, a fixed number of 20 households were selected in every urban and rural cluster according to equal probability systematic sampling.
Due to the non-proportional allocation of the sample to the different regions and the possible differences in response rates, sampling weights are required for any analysis using the 2013 NDHS data to ensure the representativeness of the survey results at the national as well as the regional level. Since the 2013 NDHS sample was a two-stage stratified cluster sample, sampling probabilities were calculated separately for each sampling stage and for each cluster.
See Appendix A in the final report for details
Face-to-face [f2f]
Three questionnaires were administered in the 2013 NDHS: the Household Questionnaire, the Woman’s Questionnaire, and the Man’s Questionnaire. These questionnaires were adapted from the standard DHS6 core questionnaires to reflect the population and health issues relevant to Namibia at a series of meetings with various stakeholders from government ministries and agencies, nongovernmental organisations, and international donors. The final draft of each questionnaire was discussed at a questionnaire design workshop organised by the MoHSS from September 25-28, 2012, in Windhoek. The questionnaires were then translated from English into the six main local languages—Afrikaans, Rukwangali, Oshiwambo, Damara/Nama, Otjiherero, and Silozi—and back translated into English. The questionnaires were finalised after the pretest, which took place from February 11-25, 2013.
The Household Questionnaire was used to list all usual household members as well as visitors in the selected households. Basic information was collected on the characteristics of each person listed, including age, sex, education, and relationship to the head of the household. For children under age 18, parents’ survival status was determined. In addition, the Household Questionnaire included questions on knowledge of malaria and use of mosquito nets by household members, along with questions regarding health expenditures. The Household Questionnaire was used to identify women and men who were eligible for the individual interview and the interview on domestic violence. The questionnaire also collected information on characteristics of the household’s dwelling unit, such as source of water, type of toilet facilities, materials used for the floor of the house, and ownership of various durable goods. The results of tests assessing iodine levels were recorded as well.
In half of the survey households (the same households selected for the male survey), the Household Questionnaire was also used to record information on anthropometry and biomarker data collected from eligible respondents, as follows: • All eligible women and men age 15-64 were measured, weighed, and tested for anaemia and HIV. • All eligible women and men age 35-64 had their blood pressure and blood glucose measured. • All children age 0 to 59 months were measured and weighed. • All children age 6 to 59 months were tested for anaemia.
The Woman’s Questionnaire was also used to collect information from women age 50-64 living in half of the selected survey households on background characteristics, marriage and sexual activity, women’s work and husbands’ background characteristics, awareness and behaviour regarding AIDS and other STIs, and other health issues.
The Man’s Questionnaire was administered to all men age 15-64 living in half of the selected survey households. The Man’s Questionnaire collected much of the same information as the Woman’s Questionnaire but was shorter because it did not contain a detailed reproductive history or questions on maternal and child health or nutrition.
CSPro—a Windows-based integrated census and survey processing system that combines and replaces the ISSA and IMPS packages—was used for entry, editing, and tabulation of the NDHS data. Prior to data entry, a practical training session was provided by ICF International to all data entry staff. A total of 28 data processing personnel, including 17 data entry operators, one questionnaire administrator, two office editors, three secondary editors, two network technicians, two data processing supervisors, and one coordinator, were recruited and trained on administration of questionnaires and coding, data entry and verification, correction of questionnaires and provision of feedback, and secondary editing. NDHS data processing was formally launched during the week of June 22, 2013, at the National Statistics Agency Data Processing Centre in Windhoek. The data entry and editing phase of the survey was completed in January 2014.
A total of 11,004 households were selected for the sample, of which 10,165 were found to be occupied during data collection. Of the occupied households, 9,849 were successfully interviewed, yielding a household response rate of 97 percent.
In these households, 9,940 women age 15-49 were identified as eligible for the individual interview. Interviews were completed with 9,176 women, yielding a response rate of 92 percent. In addition, in half of these households, 842 women age 50-64 were successfully interviewed; in this group of women, the response rate was 91 percent.
Of the 5,271 eligible men identified in the selected subsample of households, 4,481 (85 percent) were successfully interviewed.
Response rates were higher in rural than in urban areas, with the rural-urban difference more marked among men than among women.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview
Facebook
TwitterDatasets dating from 1986 to the present are available for 93 countries in which data were collect through Household questionnaires, Women's questionnaires, Men's questionnaires, Biomarker's questionnaires, and Fieldworker's questionnaires. The following data types are produced from the collected data : Household Recode, Household Member Recode, Individual Women's Recode, Births Recode, Children's Recode, Men's Recode, Couple's Recode, Geographic Data, Geospatial Covariates. To view surveys and available datasets go to https://dhsprogram.com/data/available-datasets.cfm. Access to datasets for DHS surveys and their supporting documents may be granted to individuals who register at https://dhsprogram.com/data/new-user-registration.cfm and create a new research project request.
Facebook
TwitterThe World Health Survey was implemented by WHO in 2002–2004 in partnership with 70 countries to generate information on the health of adult populations and health systems. The total sample size in these cross-sectional studies includes over 300,000 individuals. Survey materials and data are available through the WHO World Health Survey Data Archive accessible from the WHS webpage. (From the WHO World Health Survey webpage).
Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Facebook
TwitterThe National Health Interview Survey (NHIS) is the principal source of information on the health of the civilian noninstitutionalized population of the United States and is one of the major data collection programs of the National Center for Health Statistics (NCHS) which is part of the Centers for Disease Control and Prevention (CDC). The National Health Survey Act of 1956 provided for a continuing survey and special studies to secure accurate and current statistical information on the amount, distribution, and effects of illness and disability in the United States and the services rendered for or because of such conditions. The survey referred to in the Act, now called the National Health Interview Survey, was initiated in July 1957. Since 1960, the survey has been conducted by NCHS, which was formed when the National Health Survey and the National Vital Statistics Division were combined. NHIS data are used widely throughout the Department of Health and Human Services (DHHS) to monitor trends in illness and disability and to track progress toward achieving national health objectives. The data are also used by the public health research community for epidemiologic and policy analysis of such timely issues as characterizing those with various health problems, determining barriers to accessing and using appropriate health care, and evaluating Federal health programs. The NHIS also has a central role in the ongoing integration of household surveys in DHHS. The designs of two major DHHS national household surveys have been or are linked to the NHIS. The National Survey of Family Growth used the NHIS sampling frame in its first five cycles and the Medical Expenditure Panel Survey currently uses half of the NHIS sampling frame. Other linkage includes linking NHIS data to death certificates in the National Death Index (NDI). While the NHIS has been conducted continuously since 1957, the content of the survey has been updated about every 10-15 years. In 1996, a substantially revised NHIS questionnaire began field testing. This revised questionnaire, described in detail below, was implemented in 1997 and has improved the ability of the NHIS to provide important health information.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
The Health Survey for England (HSE) is part of a programme of surveys commissioned by the Health and Social Care Information Centre. It has been carried out since 1994 by the Joint Health Surveys Unit of NatCen Social Research and the Research Department of Epidemiology and Public Health at UCL (University College London). The study provides regular information that cannot be obtained from other sources on a range of aspects concerning the public's health and many of the factors that affect health. The series of Health Surveys for England was designed to monitor trends in the nation's health, to estimate the proportion of people in England who have specified health conditions, and to estimate the prevalence of certain risk factors and combinations of risk factors associated with these conditions. The survey is also used to monitor progress towards selected health targets. Each survey in the series includes core questions and measurements (such as blood pressure, anthropometric measurements and analysis of blood and saliva samples), as well as modules of questions on specific issues that vary from year to year. In some years, the core sample has also been augmented by an additional boosted sample from a specific population subgroup, such as minority ethnic groups, older people or children; there was no boost in 2012. This is the 22nd annual Health Survey for England. All surveys have covered the adult population aged 16 and over living in private households in England. Since 1995, the surveys have included children who live in households selected for the survey; children aged 2-15 were included from 1995, and infants under two years old were added in 2001. Those living in institutions were outside the scope of the survey. This should be borne in mind when considering survey findings, since the institutional population is likely to be older and less healthy than those living in private households. The HSE in 2012 provided a representative sample of the population at both national and regional level. 9,024 addresses were randomly selected in 564 postcode sectors, issued over twelve months from January to December 2012. Where an address was found to have multiple dwelling units, a random selection was made and a single dwelling unit was included. Where there were multiple households at a dwelling unit, again one was selected at random. All adults and children in selected households were eligible for inclusion in the survey. Where there were three or more children aged 0-15 in a household, two of the children were selected at random to limit the respondent burden for parents. A nurse visit was arranged for all participants who consented. A total of 8,291 adults and 2,043 children were interviewed. A household response rate of 64 per cent was achieved. 5,470 adults and 1,203 children had a nurse visit. It should be noted that, as in 2011, there was no child boost sample in 2012. Thus the scope for analyses of some data for children may be limited by relatively small sample sizes.
Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
The Health Survey for England series was designed to monitor trends in the nation's health, to estimate the proportion of people in England who have specified health conditions, and to estimate the prevalence of risk factors associated with these conditions. The surveys provide regular information that cannot be obtained from other sources on a range of aspects concerning the public's health. The surveys have been carried out since 1994 by the Joint Health Surveys Unit of NatCen Social Research and the Research Department of Epidemiology and Public Health at UCL. Each survey in the series includes core questions and measurements (such as blood pressure, height and weight, and analysis of blood and saliva samples), as well as modules of questions on topics that vary from year to year. New topics this year include hearing and mental health. The achieved sample for the 2014 survey was 8,077 adults (aged 16 and over) and 2,003 children (aged 0-15). This year tables are in excel spreadsheets and the way the findings are presented in the report and summary has changed. We would very much like to hear readers' views about these changes. Please tell us via the short reader survey at the bottom of this page in Related links. Please note this release was updated on 15 January 2016 to add chapter 2 - Mental Health Problems and chapter 3 - Attitudes towards Mental Illness and their associated excel tables and to update the Summary of Key Findings.
Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Since 1993, the Czech Republic has carried out the so-called Sample Survey on the Health Status of the Czech Population, referred to as the HIS CR. This survey was conducted by the Institute of Health Information and Statistics of the Czech Republic every three years until 2002. In subsequent years, it was followed up by the European Health Sample Survey (EHIS), which took place in the Czech Republic in 2008 and 2014.
Facebook
TwitterThe 2023 Jordan Population and Family Health Survey (JPFHS) is the eighth Population and Family Health Survey conducted in Jordan, following those conducted in 1990, 1997, 2002, 2007, 2009, 2012, and 2017–18. It was implemented by the Department of Statistics (DoS) at the request of the Ministry of Health (MoH).
The primary objective of the 2023 JPFHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the 2023 JPFHS: • Collected data at the national level that allowed calculation of key demographic indicators • Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality • Measured contraceptive knowledge and practice • Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15–49 • Conducted haemoglobin testing with eligible children age 6–59 months and women age 15–49 to gather information on the prevalence of anaemia • Collected data on women’s and men’s knowledge and attitudes regarding sexually transmitted infections and HIV/AIDS • Obtained data on women’s experience of emotional, physical, and sexual violence • Gathered data on disability among household members
The information collected through the 2023 JPFHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Jordan.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2023 JPFHS was the 2015 Jordan Population and Housing Census (JPHC) frame. The survey was designed to produce representative results for the country as a whole, for urban and rural areas separately, for each of the country’s 12 governorates, and for four nationality domains: the Jordanian population, the Syrian population living in refugee camps, the Syrian population living outside of camps, and the population of other nationalities. Each of the 12 governorates is subdivided into districts, each district into subdistricts, each subdistrict into localities, and each locality into areas and subareas. In addition to these administrative units, during the 2015 JPHC each subarea was divided into convenient area units called census blocks. An electronic file of a complete list of all of the census blocks is available from DoS. The list contains census information on households, populations, geographical locations, and socioeconomic characteristics of each block. Based on this list, census blocks were regrouped to form a general statistical unit of moderate size, called a cluster, which is widely used in various surveys as the primary sampling unit (PSU). The sample clusters for the 2023 JPFHS were selected from the frame of cluster units provided by the DoS.
The sample for the 2023 JPFHS was a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. In addition, the Syrian refugee camps in Zarqa and Mafraq each formed a special sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a twostage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and subdistrict within each sampling stratum. By using a probability proportional to size selection at the first stage of sampling, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Five questionnaires were used for the 2023 JPFHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Man’s Questionnaire, (4) the Biomarker Questionnaire, and (5) the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Jordan. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Arabic.
All electronic data files for the 2023 JPFHS were transferred via SynCloud to the DoS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July and completed in September 2023.
A total of 20,054 households were selected for the sample, of which 19,809 were occupied. Of the occupied households, 19,475 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 13,020 eligible women age 15–49 were identified for individual interviews; interviews were completed with 12,595 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 6,506 men age 15–59 were identified as eligible for individual interviews and 5,873 were successfully interviewed, yielding a response rate of 90%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2023 Jordan Population and Family Health Survey (2023 JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2023 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2023 JPFHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data are the part of the two National Health Surveys in the Republic of Serbia, conducted in 2006 and 2013, funded by the Ministry of Health. The survey was conducted in accordance with the methodology and instruments of the European Health Interview Survey wave 2. Both surveys were conducted as cross sectional studies. Population presented in the research included adults, aged 19 and more. The researches excluded people living on the territory of Kosovo and Metohija, as well as people with residence addresses in Special institutions (retirement homes, prisons, psychiatric clinics). Data on basic characteristics of the interviewees, health condition of the interviewees, using hospital and non-hospital health care services and prevention check-ups and unachieved need for health care was obtained through a face-to-face interview carried out at home, while information at the level of the household was obtained by means of a household questionnaire. The questions were validated instruments based on the standard questionnaires from similar types of surveys.
Facebook
Twittersflagg/Kaggle-Mental-Health-Survey-Data dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterThe National Family Health Survey (NFHS) is a large-scale, multi-round survey conducted in a representative sample of households throughout India. Four rounds of the survey have been conducted in 1992-93, 1998-99, 2005-06, and 2015-16. The fifth round of the survey (2019-2020) is currently in the field. All of the surveys are part of the Demographic and Health Surveys (DHS) Program. The surveys provide information on population, health, and nutrition at the national and state level. Since 2015-16, the surveys have also provided information at the district level. Some of the major topics included in NFHS-4 (2015-16) are fertility, infant and child mortality, family planning, maternal and reproductive health, child vaccinations, prevalence and treatment of childhood diseases, nutrition, women’s empowerment, domestic violence, marriage, sexual activity, employment, anemia, anthropometry, HIV/AIDS knowledge and testing, tobacco and alcohol use, biomarker tests (anthropometry, anemia, HIV, blood pressure, and blood glucose), and water, sanitation, and hygiene. The primary objective of the NFHS surveys is to provide essential data on health and family welfare, as well as emerging issues in these areas. The information collected through the NFHS surveys is intended to assist policymakers and program managers in setting benchmarks and examining progress over time in India’s health sector. The Ministry of Health and Family Welfare (MOHFW), Government of India, designated the International Institute for Population Sciences (IIPS), Mumbai, as the agency responsible for providing coordination and technical guidance for all of the surveys. IIPS has collaborated with a large number of field agencies for survey implementation. The Demographic and Health Surveys Program has provided technical assistance for all of the surveys.
You can access the data through the DHS website. Data files are available in the following five formats:
%3C!-- --%3E
All datasets are distributed in archived ZIP files that include the data file and its associated documentation. The DHS Program is authorized to distribute, at no cost, unrestricted survey data files for legitimate academic research. Registration is required to access the data.
Additional information about the surveys is available on the India page on the DHS Program website. This page provides a list of surveys and reports, plus Country Quickstats for India, and it is the gateway to accessing more information about the India surveys and datasets.
Methodology
2015-16 National Family Health Survey (NFHS-4): Fieldwork for NFHS-4 was conducted in two phases, from January 2015 to December 2016. The fieldwork was conducted by 14 field agencies, including three Population Research Centers. Laboratory testing for HIV was done by seven laboratories throughout India. NFHS-4 collected information from a nationally representative sample of 601,509 households, 699,686 women age 15-49, and 112,122 men age 15-54. The survey covered all 29 states, 7 Union Territories, and 640 districts in India.
Funding for the survey was provided by the Ministry of Health and Family Welfare, Government of India; the United States Agency for International Development (USAID); UKAID/DFID; the Bill & Melinda Gates Foundation; UNICEF; the United Nations Population Fund (UNFPA); and the MacArthur Foundation. Technical Assistance for NFHS-4 was provided by Macro International, Maryland, USA.
2005-06 National Family Health Survey (NFHS-3): Fieldwork for NFHS-3 was conducted in two phases, from November 2005 to August 2006. The fieldwork was conducted by 18 field agencies, including six Population Research Centers. Laboratory testing for HIV was done by the SRL Ranbaxy laboratory in Mumbai. NFHS-3 collected information from a nationally representative sample of 109,041 households, 124,385 women age 15-49, and 74,369 men age 15-54. The survey covered all 29 states. Only the Union Territories were not included.
Funding for the survey was provided by the United States Agency for International Development (USAID); United Kingdom Department for International Development (DFID); the Bill & Melinda Gates Foundation; UNICEF; the United Nations Population Fund (UNFPA); and the Government of India. Technical assistance for NFHS-3 was provided by Macro International, Maryland, USA.
1998-99 National Family Health Survey (NFHS-2): Fieldwork for NFHS-2 was conducted in two phases, from November 1998 to December 1999. The fieldwork was conducted by 13 field agencies, including five Population Research Centers. NFHS-2 collected information from a nationally representative sample of 91,196 households and 89,188 ever-married women age 15-49. Male interviews were not included in the survey. The survey cover
Facebook
TwitterThe Demographic and Health Surveys (DHS) Program overseen by the US Agency for International AID (USAID) uses nationally representative surveys, biomarker testing, and geographic location to collect data on monitoring and impact evaluation indicators for individual countries and for cross-country comparisons.
Standardized DHS surveys include the Demographic and Health Survey, Service Provision Assessment, HIV/AIDS Indicator Survey, Malaria Indicator Survey, and Key Indicators Survey. The DHS Program also collects biomarkers and geographic data. Data availability varies by year and country. A table that lists all currently available data can be found here.