Facebook
TwitterThis dataset provides global, regional, and GBD location-specific life expectancy and health adjusted life expectancy (HALE) at birth, by sex, in 1990, 2006, and 2016.
Facebook
TwitterIn 2019, Costa Rica and Chile were the Latin American countries with the highest healthy life expectancy (HALE) at birth, with an average estimated healthy life span of around 70 years each. Peru and Colombia followed, where the number of healthy life years was calculated at **** years and 69 years, respectively. In contrast, people born in Haiti that year were expected to live an average of less than 56 years in full health.
Facebook
TwitterHealthy life expectancy (HALE) at birth (years)
Facebook
TwitterMonaco had the highest life expectancy among both men and women worldwide as of 2024. That year, life expectancy for men and women was ** and ** years, respectively. The East Asian countries and regions, Hong Kong, Japan, South Korea, and Macao, followed. Many of the countries on the list are struggling with aging populations and a declining workforce as more people enter retirement age compared to people entering employment.
Facebook
TwitterHealthy life expectancy (HALE) at age 60 (years)
Facebook
TwitterThis data package contains datasets on causes, risk factor, deaths, death rate, years of life lost (YLL), years lived with disability (YLD), disability-adjusted life years (DALY), life expectancy and health-adjusted life expectancy (HALE) from the global burden of disease globally.
Facebook
TwitterHealthy life expectancy expresses the average number of years that a child born in a given calendar year can expect to live in good health. As of 2021, the healthy life expectancy was the highest in Trentino-South Tyrol, reaching 65.8 years of life. On the contrary, the lowest was in Calabria, with 54.4 years.
Facebook
TwitterAs of 2023, the countries with the highest life expectancy included Liechtenstein, Switzerland, and Japan. In Japan, a person could expect to live up to around ** years. In general, the life expectancy for females is higher than that of males, with lifestyle choices and genetics the two major determining factors of life expectancy. Life expectancy worldwide The overall life expectancy worldwide has increased since the development of modern medicine and technology. In 2011, the global life expectancy was **** years. By 2023, it had increased to **** years. However, the years 2020 and 2021 saw a decline in global life expectancy due to the COVID-19 pandemic. Furthermore, not every country has seen a substantial increase in life expectancy. In Nigeria, for example, the life expectancy is only ** years, almost ***years shorter than the global average. In addition to Nigeria, the countries with the shortest life expectancy include Chad, Lesotho, and the Central African Republic. Life expectancy in the U.S. In the United States, life expectancy at birth is currently ***** years. Life expectancy in the U.S. generally increases every year, however, over the past decade, life expectancy has seen some surprising decreases. The major contributing factors to this drop have been the ongoing opioid epidemic, which claimed around ****** lives in 2022 alone, and the COVID-19 pandemic.
Facebook
TwitterLife Expectancy of the World Population
The dataset from Worldometer provides a ranked list of countries based on life expectancy at birth, which represents the average number of years a newborn is expected to live under current mortality rates. It includes global, regional, and country-specific life expectancy figures, with separate data for males and females. The dataset highlights disparities in longevity across nations, with countries like Hong Kong, Japan, and South Korea having the highest life expectancies. This data serves as a key indicator of public health, quality of life, and healthcare effectiveness, offering valuable insights for policymakers, researchers, and global health organizations.
Data Analysis & Machine Learning Approaches for Life Expectancy Data
Data Analysis Approaches Life expectancy data can be analyzed using descriptive statistics (mean, variance, distribution) and correlation analysis to identify relationships with factors like GDP, healthcare, and education. Time series analysis helps track longevity trends over time, while clustering techniques (e.g., K-Means) group countries with similar patterns. Additionally, geospatial analysis can visualize regional disparities in life expectancy.
Machine Learning Models For prediction, linear and multiple regression models estimate life expectancy based on socioeconomic indicators, while polynomial regression captures non-linear trends. Decision trees and Random Forests classify countries into high- and low-life expectancy groups. Deep learning techniques like neural networks (ANNs) can model complex relationships, while LSTMs are useful for time-series forecasting.
For pattern detection, K-Means clustering groups countries based on life expectancy trends, and DBSCAN identifies anomalies. Principal Component Analysis (PCA) helps in feature selection, improving model efficiency. These methods provide insights into longevity trends, helping policymakers and researchers improve public health strategies.
Life expectancy at birth. Data based on the latest United Nations Population Division estimates.
Source: https://www.worldometers.info/demographics/life-expectancy/#countries-ranked-by-life-expectancy
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Jordan JO: Life Expectancy at Birth: Total data was reported at 74.329 Year in 2016. This records an increase from the previous number of 74.182 Year for 2015. Jordan JO: Life Expectancy at Birth: Total data is updated yearly, averaging 69.311 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 74.329 Year in 2016 and a record low of 52.651 Year in 1960. Jordan JO: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Databaseโs Jordan โ Table JO.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides general health prevalence and healthy life expectancy estimates for UK local areas by method including census and published method estimates.
Facebook
TwitterCountries where people live for a long time, as a rule, provide their citizens with high-quality medical care and help them lead a healthy lifestyle. On the contrary, in countries with low life expectancy, there are usually economic difficulties, poverty and lack of access to health services.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides aggregated life expectancy data averaged over multiple years for various countries, along with associated socio-economic and health-related factors. It aims to facilitate analysis of global health trends, the relationship between life expectancy and development indicators, and regional disparities.
This dataset can be used for: 1. Exploratory Data Analysis (EDA): Understand trends in life expectancy across different regions and economic statuses. 2. Data Visualization: Create meaningful plots (e.g., choropleth maps, scatter plots, pair plots) to analyze relationships between variables. 3. Machine Learning: Develop predictive models for life expectancy based on socio-economic and health factors. 4. Policy Research: Support policy-making by identifying key factors influencing life expectancy.
This dataset is shared under the CC BY 4.0 License. Proper attribution is required for reuse.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Life expectancy and Healthy life expectancy data by country and wealth group from the World Health Organization (WHO). Historical data starts from 2000 and latest data points are from 2019.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life. It is a key metric for assessing population health.
Life expectancy has burgeoned since the advent of industrialization in the early 1900s and the world average has now more than doubled to 70 years. Yet, we still see inequality in life expectancy across and within countries. The study by Acemoglu and Johnson demonstrated the relationship between increased life expectancy and improvement in economic growth (GDP per capita), controlling for country-fixed effects [3]. In the table below, we have shown how life expectancy varies between high-income and low-income countries. However, further analysis is necessary to determine how the allocation of a countryโs wealth through certain investments in healthcare, education, environmental management, and some socioeconomic factors have an overall effect in determining average life expectancy.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2798169%2F628ce779038d936de99db54cf792ce8d%2Fle_reg.png?generation=1693904967765822&alt=media" alt="">
The Sub-Saharan African region experiences the lowest life expectancy at birth compared to other regions over the past 3 decades. SSA countries have consistently ranked as the lowest-earning countries in terms of GDP per capita. Therefore, there is a huge scope for improvement in life expectancy in SSA countries and hence our research focuses on the 40 Sub-Saharan African (SSA) countries with the lowest GDP per capita
After reviewing the rich existing literature on Life Expectancy, we realized the lack of concrete research on understanding the impact of all-encompassing determinants that cover socio-economic and environmental factors for SSA countries using Panel Data techniques. Hence, we tried to address this inadequacy through our research. In this paper, we aim to have a better understanding of factors affecting life expectancy in the SSA region for an efficient policy-making process and better allocation of funds and resources in addressing the prevalence of low life expectancy in Sub-Saharan Africa. To achieve that we attempt to answer the following questions in this research:
Main sources of data - World Bank Open Data & Our World in Data
Country - 174 countries - list
Country Code - 3-letter code
Region - region of the world country is located in
IncomeGroup - country's income class
Year - 2000-2019 (both included)
Life expectancy - data
Prevalence of Undernourishment (% of the population) - Prevalence of undernourishment is the percentage of the population whose habitual food consumption is insufficient to provide the dietary energy levels that are required to maintain a normally active and healthy life
Carbon dioxide emissions (kiloton) - Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during the consumption of solid, liquid, and gas fuels and gas flaring
Health Expenditure (% of GDP) - Level of current health expenditure expressed as a percentage of GDP. Estimates of current health expenditures include healthcare goods and services consumed during each year. This indicator does not include capital health expenditures such as buildings, machinery, IT, and stocks of vaccines for emergencies or outbreaks
Education Expenditure (% of GDP) - General government expenditure on education (current, capital, and transfers) is expressed as a percentage of GDP. It includes expenditures funded by transfers from international sources to the government. General government usually refers to local, regional, and central governments.
Unemployment (% total labor force) - Unemployment refers to the % share of the labor force that is without work but available for and seeking employment
Corruption (CPIA rating) - Transparency, accountability, and corruption in the public sector assets the extent to which the executive can be held accountable for its use of funds and for the results of its actions by the electorate and by the legislature and judiciary, and the extent to which public employees within the executive are required to...
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
PLEASE if you use or like this dataset UPVOTE ๐๏ธ
This dataset offers a detailed historical record of global life expectancy, covering data from 1960 to the present. It is meticulously curated to enable deep analysis of trends and gender disparities in life expectancy worldwide.
Dataset Structure & Key Columns:
Country Code (๐ค): Unique identifier for each country.
Country Name (๐): Official name of the country.
Region (๐): Broad geographical area (e.g., Asia, Europe, Africa).
Sub-Region (๐บ๏ธ): More specific regional classification within the broader region.
Intermediate Region (๐): Additional granular geographical grouping when applicable.
Year (๐ ): The specific year to which the data pertains.
Life Expectancy for Women (๐ฉโโ๏ธ): Average years a woman is expected to live in that country and year.
Life Expectancy for Men (๐จโโ๏ธ): Average years a man is expected to live in that country and year.
Context & Use Cases:
This dataset is a rich resource for exploring long-term trends in global health and demography. By comparing life expectancy data over decades, researchers can:
Analyze Time Series Trends: Forecast future changes in life expectancy and evaluate the impact of health interventions over time.
Study Gender Disparities: Investigate the differences between life expectancy for women and men, providing insights into social, economic, and healthcare factors influencing these trends.
Regional & Sub-Regional Analysis: Compare and contrast life expectancy across various regions and sub-regions to understand geographical disparities and their underlying causes.
Support Public Policy Research: Inform policymakers by linking life expectancy trends with public health policies, socioeconomic developments, and other key indicators.
Educational & Data Science Applications: Serve as a comprehensive teaching tool for courses on public health, global development, and data analysis, as well as for Kaggle competitions and projects.
With its detailed, structured format and broad temporal coverage, this dataset is ideal for anyone looking to gain a nuanced understanding of global health trends and to drive impactful analyses in public health, social sciences, and beyond.
Feel free to ask for further customizations or additional details as needed!
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset explores the factors influencing life expectancy across various countries and years, aiming to uncover patterns and disparities in health outcomes based on geographic locations. By examining key features such as adult mortality, alcohol consumption, healthcare expenditures, and socioeconomic indicators, this dataset provides insights into the complex interplay of factors shaping life expectancy worldwide.
| Feature | Description |
|---|---|
| Country | Name of the country |
| Year | Year of observation |
| Status | Urban or rural status |
| Life expectancy | Life expectancy at birth in years |
| Adult Mortality | Probability of dying between 15 and 60 years per 1000 |
| Infant deaths | Number of infant deaths per 1000 population |
| Alcohol | Alcohol consumption, measured as liters per capita |
| Percentage expenditure | Expenditure on health as a percentage of GDP |
| Hepatitis B | Hepatitis B immunization coverage among 1-year-olds (%) |
| Measles | Number of reported measles cases per 1000 population |
| BMI | Average Body Mass Index of the population |
| Under-five deaths | Number of deaths under age five per 1000 population |
| Polio | Polio immunization coverage among 1-year-olds (%) |
| Total expenditure | Total government health expenditure as a percentage of GDP |
| Diphtheria | Diphtheria tetanus toxoid and pertussis immunization coverage among 1-year-olds (%) |
| HIV/AIDS | Deaths per 1 000 live births due to HIV/AIDS (0-4 years) |
| GDP | Gross Domestic Product per capita (in USD) |
| Population | Population of the country |
| Thinness 1-19 years | Prevalence of thinness among children and adolescents aged 10โ19 (%) |
| Thinness 5-9 years | Prevalence of thinness among children aged 5โ9 (%) |
| Income composition of resources | Human Development Index in terms of income composition of resources (0 to 1) |
| Schooling | Number of years of schooling |
World Health Organization (WHO), United Nations (UN), World Bank, etc.
Facebook
TwitterIn 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84โ83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53โ54 years.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011โ2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterHealthy life expectancy (HALE) at age 60 (years)
Dataset Description
This dataset provides information on 'Healthy life expectancy' for countries in the WHO African Region. The data is disaggregated by the 'Sex' dimension, allowing for analysis of health inequalities across different population subgroups. Units: HALE
Dimensions and Subgroups
Dimension: Sex Available Subgroups: Female, Male
Data Structure
The dataset is in a wide format.
Index:โฆ See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/healthy-life-expectancyat-age-60by-sex-for-african-countries.
Facebook
TwitterThis dataset provides global, regional, and GBD location-specific life expectancy and health adjusted life expectancy (HALE) at birth, by sex, in 1990, 2006, and 2016.