Topeka Pedestrian Priority Area Heat Map
About the App This app hosts data from Heat Resilience Solutions for Boston (the Heat Plan). It features maps that include daytime and nighttime air temperature, urban heat island index, and extreme heat duration. About the DataA citywide urban canopy model was developed to produce modeled air temperature maps for the City of Boston Heat Resilience Study in 2021. Sasaki Associates served as the lead consultant working with the City of Boston. The technical methodology for the urban canopy model was produced by Klimaat Consulting & Innovation Inc. A weeklong analysis period during July 18th-24th, 2019 was selected to produce heat characteristics maps for the study (one of the hottest weeks in Boston that year). The data array represents the modelled, average hourly urban meteorological condition at 100 meter spatial resolution. This dataset was processed into urban heat indices and delivered as georeferenced image layers. The data layers have been resampled to 10 meter resolution for visualization purposes. For the detailed methodology of the urban canopy model, visit the Heat Resilience Study project website.
Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Evaluating multiple signals of climate change across the conterminous United States during three 30-year periods (2010�2039, 2040�2069, 2070�2099) during this century to a baseline period (1980�2009) emphasizes potential changes for growing degree days (GDD), plant hardiness zones (PHZ), and heat zones. These indices were derived using the CCSM4 and GFDL CM3 models under the representative concentration pathways 4.5 and 8.5, respectively, and included in Matthews et al. (2018). Daily temperature was downscaled by Maurer et al.�(https://doi.org/10.1029/2007EO470006 at a 1/8 degree grid scale and used to obtain growing degree days, plant hardiness zones, and heat zones.�Each of these indices provides unique information about plant health related to changes in climatic conditions that influence establishment, growth, and survival. These data and the calculated changes are provided as 14 individual IMG files for each index to assist with management planning and decision making into the future. For each of the four indices the following are included: two baseline files (1980�2009), three files representing 30-year periods for the scenario CCSM4 under RCP 4.5 along with three files of changes, and three files representing 30-year periods for the scenario GFDL CM3 under RCP 8.5 along with three files of changes. Growing degree days address an important component to general patterns of plant growth by accumulating the degree days across the growing season. This metric provides a level of detail related to defining the growing season potential. Here, we evaluate the accumulation of growing degree days at or above 5 �C (41 �F), assuming that limited growth occurs below 5 �C.�Specifically, we calculate growing degree days by first calculating the average daily temperature, based on the maximum and minimum projected daily temperature. We then subtract 5 �C from each mean value and then accumulate the positive difference values for all days within each year. The mean GDD values for the conterminous United States during the baseline period ranged from less than 100 to over 7,000 degree days, increasing from north to south with highest values in the Florida panhandle, southern Texas, southwestern Arizona, and southeastern California. GDD projections throughout the century suggest a ubiquitous increase across the United States with slightly less change in the Northeast and much greater increases throughout the southern United States under the high scenario. Original data and associated metadata can be downloaded from this website:�https://www.fs.usda.gov/rds/archive/Product/RDS-2019-0001This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Area-wide modeled near-surface temperature for 6-7 am on July 27, 2020, based on temperature and humidity data collected for a one-day heat mapping project conducted by King County, Seattle Public Utilities, and the City of Seattle. Data collected on July 27, 2020 in partnership with project volunteers and CAPA Strategies. Data analysis and maps produced by CAPA strategies. This predictive temperature model was created from multi-band land cover rasters from Sentinel-2 satellite and raw heat data from sensor SD cards using the 70:30 holdout method.Heat maps also available for 6-7 am and 7-8 pm. Results can be viewed using this ArcGIS web app viewer. More information on the project available in Heat Watch Report for Seattle & King County. Contact CAPA Strategies for questions on the data, maps, and data analysis methods.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cities in the U.S. are getting hotter, and that is causing significant health risks, especially to minorities, the elderly, and impoverished. There is significant spatial variation in temperature across a city due to changes in the landscape (elevation, tree cover, development, etc). NOAA has been engaged in a nationwide effort with CAPA Strategies to use a combination of Sentinel-2 satellite data along with temperature readings recorded from car- and bike-mounted sensors to generate detailed maps of the urban areas most impacted by heat. These measurements have been combined into single raster layers for morning, afternoon, and evening temperatures. As of 2020, 27 cities (26 in the U.S) have been mapped; a total of 50 cities will be mapped by the end of 2021. This layer shows the census tract (neighborhood) averages for those temperatures, along with additional information calculated for each neighborhood including:Temperature anomaly (neighborhood temperature compared to the citywide average based on the CAPA data)Impervious surfaceTree coverDemographicsTotal populationPopulation <5Population >65MinorityMedian incomePovertyCombining these different types of information can help planners identify areas at risk and help to develop mitigation and resilience plans to improve urban living conditions. More information about the campaign can be found in this Story Map by NOAA.
Date of freeze for historical (1985-2005) and future (2071-2090, RCP 8.5) time periods, and absolute change between them, based on analysis of MACAv2METDATA. Average historical temperature change, between 1948-1968 and 1996-2016 averages, in Celsius. Calculated using averages of minimum and maximum monthly values during these time periods. Values are based on TopoWx data. Download this data or get more information
This dataset consists of summer temperature metrics for Boston, MA. These heat metrics summarize six CAPA Urban Heat Watch program temperature and heat index datasets using geographical boundaries from the Census Tract (CT) layer. Heat datasets were created by Museum of Science, Boston, and the Helmuth Lab at Northeastern University. Heat metrics are presented in the attribute table as mean values of each Heat Watch program dataset for all hexagon features. The six heat values included in this table are July 2019 temperature and heat index in degrees Fahrenheit for each of 3 1-hour periods -- 6 a.m., 3 p.m., and 7 p.m. EDT. The geographic boundaries used to summarize the heat metrics are current as of 2019.
The following dataset includes "Active Benchmarks," which are provided to facilitate the identification of City-managed standard benchmarks. Standard benchmarks are for public and private use in establishing a point in space. Note: The benchmarks are referenced to the Chicago City Datum = 0.00, (CCD = 579.88 feet above mean tide New York). The City of Chicago Department of Water Management’s (DWM) Topographic Benchmark is the source of the benchmark information contained in this online database. The information contained in the index card system was compiled by scanning the original cards, then transcribing some of this information to prepare a table and map. Over time, the DWM will contract services to field verify the data and update the index card system and this online database.This dataset was last updated September 2011. Coordinates are estimated. To view map, go to https://data.cityofchicago.org/Buildings/Elevation-Benchmarks-Map/kmt9-pg57 or for PDF map, go to http://cityofchicago.org/content/dam/city/depts/water/supp_info/Benchmarks/BMMap.pdf. Please read the Terms of Use: http://www.cityofchicago.org/city/en/narr/foia/data_disclaimer.html.
This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Notice: this is not the latest Heat Island Severity image service.This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. Heat Severity is a reclassified version of Heat Anomalies raster which is also published on this site. This data is generated from 30-meter Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Heat Severity - USA 2022Heat Severity - USA 2021Heat Severity - USA 2020Heat Severity - USA 2019Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
https://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttps://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
The Scotland Heat Map is a tool to help plan for the reduction of carbon emissions from heat in buildings. This service allows users to view layers from the map using their GIS software. The Scotland Heat Map is produced by the Scottish Government. The most recent version is the Scotland Heat Map 2022, which was released to local authorities in November 2023. More information can be found in the documentation available on the Scottish Government website: https://www.gov.scot/publications/scotland-heat-map-documents/
This collection of data are the outputs from the O‘ahu Community Heat Assessment lead by the City & County of Honolulu Office of Climate Change, Sustainability & Resiliency. On August 31, 2019, City staff and community volunteers collected heat and humidity data across O‘ahu’s neighborhoods. Those data were analyzed to produce heat index maps.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This archive contains a geology map of the general Roosevelt Hot Springs region, both in PDF and ArcGIS geodatabase formats, that was created as part of the Utah FORGE project.
London Heat Map --------------- The London Heat Map is a tool designed to help you identify areas of high heat demand, explore opportunities for new and expanding district heat networks and to draw potential heat networks and assess their financial feasibility. The new version of the London Heat Map was created for the Greater London Authority by the Centre for Sustainable Energy (CSE) in July 2019. The London Heat Map is regularly updated with new network data and other datasets. Background datasets such as building heat demand was last updated on 26/06/2023. The London Heatmap is a map-based web application you can use to find and appraise opportunities for decentralised energy (DE) projects in London. The map covers the whole of Greater London, and provides very local information to help you identify and develop DE opportunities, including data such as: * Heat demand values for each building * Locations of potential heat supply sites * Locations of existing and proposed district heating networks * A spatial heat demand density map layer The map also includes a user-friendly visual tool for heat network design. This is intended to support preliminary techno-economic appraisal of potential district heat networks. The London Heat Map is used by a wide variety of people in numerous ways: * London Boroughs can use the new map to help develop their energy master plans. * Property developers can use the map to help them meet the decentralised energy policies in the London Plan. * Energy consultants can use the map to gather initial data to inform feasibility studies. More information is available here, and an interactive map is available here. Building-level estimated annual and peak heat demand data from the London Heat Map has been made available through the data extracts below. The data was last updated on 26/06/2023. The data contains Ordnance Survey mapping and the data is published under Ordnance Survey's 'presumption to publish'. © Crown copyright and database rights 2023. The Decentralised Energy Master planning programme (DEMaP) ---------------------------------------------------------- The Decentralised Energy Master planning programme (DEMaP), was completed in October 2010. It included a heat mapping support package for the London boroughs to enable them to carry out high resolution heat mapping for their area. To date, heat maps have been produced for 29 London boroughs with the remaining four boroughs carrying out their own data collection. All of the data collected through this process is provided below. ### Carbon Calculator Tool Arup have produced a Carbon Calculator Tool to assist projects in their early estimation of the carbon dioxide (CO2) savings which could be realised by a district heating scheme with different sources of heating. The calculator's estimates include the impact of a decarbonising the electrical grid over time, based on projections by the Department for Energy and Climate Change, as well as the Government's Standard Assessment Procedure (SAP). The Excel-based tool can be downloaded below. ### Borough Heat Maps Data and Reports (2012) In March 2012, all London boroughs did a heat mapping exercise. The data from this includes the following and can be downloaded below: * Heat Load for all boroughs * Heat Supplies for all boroughs * Heat Network * LDD 2010 database * Complete GIS London Heat Map Data The heat maps contain real heat consumption data for priority buildings such as hospitals, leisure centres and local authority buildings. As part of this work, each of the boroughs developed implementation plans to help them take the DE opportunities identified to the next stages. The implementation plans include barriers and opportunities, actions to be taken by the council, key dates, personnel responsible. These can be downloaded below. Other Useful Documents ---------------------- Other useful documents can be downloaded from the links below: Energy Masterplanning Manual Opportunities for Decentralised Energy in London - Vision Map London Heat Network Manual London Heat Network Manual II
This dataset consists of summer temperature metrics for Boston, MA. These heat metrics summarize six CAPA Urban Heat Watch program temperature and heat index datasets using geographical boundaries from the Hexagons (Hexagons_25ha) layer. Heat datasets were created by Museum of Science, Boston, and the Helmuth Lab at Northeastern University. Heat metrics are presented in the attribute table as mean values of each Heat Watch program dataset for all hexagon features. The six heat values included in this table are July 2019 temperature and heat index in degrees Fahrenheit for each of 3 1-hour periods -- 6 a.m., 3 p.m., and 7 p.m. EDT. The geographic boundaries used to summarize the heat metrics are current as of 2019.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Learn more about the project and how to use the canopy assessment data by visiting the StoryMap!
Heat Index Map displaying "feels like" temperature, wind speed & direction, and dew point temperature. Data is sourced from the ESRI Living Atlas - Current Weather Conditions Layer.
High resolution (10 meter) land surface temperature (LST) from September 1, 2022 is mapped for the seven-county metropolitan region of the Twin Cities. The goal of the map is to show the heat differences across the region and is not intended to show the maximum temperature that any specific area can reach. The raster dataset was computed at 30 meters using satellite imagery from Landsat 9 and downscaled to 10 meters using Copernicus Sentinel-2. These datasets were integrated using techniques modified from Ermida et al. 2020 and Onačillová et al. 2022). Open water was removed using ancillary data from OpenStreetMap and 2020 Generalized Land Use for the Twin Cities (Metropolitan Council).
First, Landsat 9 imagery taken at 11:59 am CDT on September 01, 2022 was processed into 30-meter resolution LST (based on Ermida et al. 2020). At this time, the air temperature was 88° F at the Minneapolis-St. Paul International Airport (NOAA). A model predicting LST based on spectral indices of Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI) was created and applied to 10-meter Sentenel-2 imagery. Sentinel-2 imagery was also taken on September 1, 2022, and this resulted in a 10-meter downscaled LST image (based on Onačillová et al. 2022). To account for anomalies in NDVI on the primary image date of September 1 (e.g., recently harvested agricultural fields), maximum NDVI occurring between July 1, 2022 and September 1, 2022 was used for both Landsat and Sentinel image processing. Water bodies were removed for all processing steps (OpenStreetMap 2023, Metropolitan Council 2021).
This dataset is an update to the 2016 LST data for the Twin Cities Region (Metropolitan Council).
The code to create and processes this dataset is available at: https://github.com/Metropolitan-Council/extreme.heat
Sources:
Ermida, S.L., Soares, P., Mantas, V., Göttsche, F.-M., Trigo, I.F., 2020. Google Earth Engine open-source code for Land Surface Temperature estimation from the Landsat series. Remote Sensing, 12 (9), 1471; https://doi.org/10.3390/rs12091471.
Metropolitan Council. 2021. Generalized Land Use 2020. Minnesota Geospatial Commons. https://gisdata.mn.gov/dataset/us-mn-state-metc-plan-generl-lnduse2020
Metropolitan Council. 2017. Land Surface Temperature for Climate Vulnerability Analysis. Minnesota Geospatial Commons. https://gisdata.mn.gov/dataset/us-mn-state-metc-env-cva-lst2016
NOAA, National Oceanic and Atmospheric Administration, National Centers for Environmental Information, station USW00014922. September 1, 2022.
Onačillová, K., Gallay, M., Paluba, D., Péliová, A., Tokarčík, O., Laubertová, D. 2022. Combining Landsat 8 and Sentinel 2 data in Google Earth Engine to derive higher resolution land surface temperature maps in urban environment. Remote Sensing, 14 (16), 4076. https://doi.org/10.3390/rs14164076.
OpenStreetMap contributors. 2023. Retrieved from https://planet.openstreetmap.org on April 12, 2023.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Urban heat islands are small areas where temperatures are unnaturally high - usually due to dense buildings, expansive hard surfaces, or a lack of tree cover or greenspace. People living in these communities are exposed to more dangerous conditions, especially as daytime high and nighttime low temperatures increase over time. NOAA Climate Program Office and CAPA Strategies have partnered with cities around the United States to map urban heat islands. Using Sentinel-2 satellite thermal data along with on-the-ground sensors, air temperature and heat indexes are calculated for morning, afternoon, and evening time periods. The NOAA Visualization Lab, part of the NOAA Satellite and Information Service, has made the original heat mapping data available as dynamic image services.Dataset SummaryPhenomenon Mapped: heat indexUnits: degrees Fahrenheit Cell Size: 30 metersPixel Type: 32 bit floating pointData Coordinate Systems: WGS84 Mosaic Projection: WGS84 Extent: cities within the United StatesSource: NOAA and CAPA StrategiesPublication Date: September 20, 2021What can you do with this layer?This imagery layer supports communities' UHI spatial analysis and mapping capabilities. The symbology can be manually changed, or a processing template applied to the layer will provide a custom rendering. Each city can be queried.Related layers include Morning Heat Index and Evening Heat Index. Cities IncludedBoulder, CO Brooklyn, NY Greenwich Village, NY Columbia, SC Columbia, MO Columbus, OH Knoxville, TN Jacksonville, FL Las Vegas, NV Milwaukee, WI Nashville, TN Omaha, NE Philadelphia, PA Rockville, MD Gaithersburg, MD Takoma Park, MD San Francisco, CA Spokane, WA Abingdon, VA Albuquerque, NM Arlington, MA Woburn, MA Arlington, VA Atlanta, GA Charleston, SC Charlottesville, VA Clarksville, IN Farmville, VA Gresham, OR Harrisonburg, VA Kansas City, MO Lynchburg, VA Manhattan, NY Bronx, NY Newark, NJ Jersey City, NJ Elizabeth, NJ Petersburg, VA Raleigh, NC Durham, NC Richmond, VA Richmond, IN Salem, VA San Diego, CA Virginia Beach, VA Winchester, VA Austin, TX Burlington, VT Cincinnati, OH Detroit, MI El Paso, TX Houston, TX Jackson, MS Las Cruces, NM Miami, FL New Orleans, LA Providence, RI Roanoke, VA San Jose, CA Seattle, WA Vancouver, BC Canada Boston, MA Fort Lauderdale, FL Honolulu, HI Boise, ID Nampa, ID Los Angeles, CA Yonkers, NY Oakland, CA Berkeley, CA San Juan, PR Sacramento, CA San Bernardino, CA Victorville, CA West Palm Beach, FL Worcester, MA Washington, D.C. Baltimore, MD Portland, ORCities may apply to be a part of the Heat Watch program through the CAPA Strategies website. Attribute Table Informationcity_name: Afternoon Heat Index Observations in Floating-Point (°F)
Topeka Pedestrian Priority Area Heat Map