3 datasets found
  1. h

    Heat Severity - USA 2021

    • heat.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2022). Heat Severity - USA 2021 [Dataset]. https://www.heat.gov/datasets/cdd2ffd5a2fc414ca1a5e676f5fce3e3
    Explore at:
    Dataset updated
    Jan 6, 2022
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  2. Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health...

    • zenodo.org
    bin, csv, pdf
    Updated Sep 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender (2024). Extended 1.0 Dataset of "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary" [Dataset]. http://doi.org/10.5281/zenodo.13826993
    Explore at:
    bin, pdf, csvAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter Domjan; Peter Domjan; Viola Angyal; Viola Angyal; Istvan Vingender; Istvan Vingender
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 23, 2024
    Area covered
    Hungary
    Description

    Introduction

    We are enclosing the database used in our research titled "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary", along with our statistical calculations. For the sake of reproducibility, further information can be found in the file Short_Description_of_Data_Analysis.pdf and Statistical_formulas.pdf

    The sharing of data is part of our aim to strengthen the base of our scientific research. As of March 7, 2024, the detailed submission and analysis of our research findings to a scientific journal has not yet been completed.

    The dataset was expanded on 23rd September 2024 to include SPSS statistical analysis data, a heatmap, and buffer zone analysis around the Health Development Offices (HDOs) created in QGIS software.

    Short Description of Data Analysis and Attached Files (datasets):

    Our research utilised data from 2022, serving as the basis for statistical standardisation. The 2022 Hungarian census provided an objective basis for our analysis, with age group data available at the county level from the Hungarian Central Statistical Office (KSH) website. The 2022 demographic data provided an accurate picture compared to the data available from the 2023 microcensus. The used calculation is based on our standardisation of the 2022 data. For xlsx files, we used MS Excel 2019 (version: 1808, build: 10406.20006) with the SOLVER add-in.

    Hungarian Central Statistical Office served as the data source for population by age group, county, and regions: https://www.ksh.hu/stadat_files/nep/hu/nep0035.html, (accessed 04 Jan. 2024.) with data recorded in MS Excel in the Data_of_demography.xlsx file.

    In 2022, 108 Health Development Offices (HDOs) were operational, and it's noteworthy that no developments have occurred in this area since 2022. The availability of these offices and the demographic data from the Central Statistical Office in Hungary are considered public interest data, freely usable for research purposes without requiring permission.

    The contact details for the Health Development Offices were sourced from the following page (Hungarian National Population Centre (NNK)): https://www.nnk.gov.hu/index.php/efi (n=107). The Semmelweis University Health Development Centre was not listed by NNK, hence it was separately recorded as the 108th HDO. More information about the office can be found here: https://semmelweis.hu/egeszsegfejlesztes/en/ (n=1). (accessed 05 Dec. 2023.)

    Geocoordinates were determined using Google Maps (N=108): https://www.google.com/maps. (accessed 02 Jan. 2024.) Recording of geocoordinates (latitude and longitude according to WGS 84 standard), address data (postal code, town name, street, and house number), and the name of each HDO was carried out in the: Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file.

    The foundational software for geospatial modelling and display (QGIS 3.34), an open-source software, can be downloaded from:

    https://qgis.org/en/site/forusers/download.html. (accessed 04 Jan. 2024.)

    The HDOs_GeoCoordinates.gpkg QGIS project file contains Hungary's administrative map and the recorded addresses of the HDOs from the

    Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file,

    imported via .csv file.

    The OpenStreetMap tileset is directly accessible from www.openstreetmap.org in QGIS. (accessed 04 Jan. 2024.)

    The Hungarian county administrative boundaries were downloaded from the following website: https://data2.openstreetmap.hu/hatarok/index.php?admin=6 (accessed 04 Jan. 2024.)

    HDO_Buffers.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding buffer zones with a radius of 7.5 km.

    Heatmap.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding heatmap (Kernel Density Estimation).

    A brief description of the statistical formulas applied is included in the Statistical_formulas.pdf.

    Recording of our base data for statistical concentration and diversification measurement was done using MS Excel 2019 (version: 1808, build: 10406.20006) in .xlsx format.

    • Aggregated number of HDOs by county: Number_of_HDOs.xlsx
    • Standardised data (Number of HDOs per 100,000 residents): Standardized_data.xlsx
    • Calculation of the Lorenz curve: Lorenz_curve.xlsx
    • Calculation of the Gini index: Gini_Index.xlsx
    • Calculation of the LQ index: LQ_Index.xlsx
    • Calculation of the Herfindahl-Hirschman Index: Herfindahl_Hirschman_Index.xlsx
    • Calculation of the Entropy index: Entropy_Index.xlsx
    • Regression and correlation analysis calculation: Regression_correlation.xlsx

    Using the SPSS 29.0.1.0 program, we performed the following statistical calculations with the databases Data_HDOs_population_without_outliers.sav and Data_HDOs_population.sav:

    • Regression curve estimation with elderly population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_elderly_without_outlier.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county, excluding outlier values such as Budapest and Pest County: Pearson_Correlation_populations_HDOs_number_without_outliers.spv.
    • Dot diagram including total population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_total_population_without_outliers.spv.
    • Dot diagram including elderly (64<) population and number of HDOs per county, excluding outlier values such as Budapest and Pest Counties: Dot_HDO_elderly_population_without_outliers.spv
    • Regression curve estimation with total population and number of HDOs, excluding outlier values (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_without_outlier.spv
    • Dot diagram including elderly (64<) population and number of HDOs per county: Dot_HDO_elderly_population.spv
    • Dot diagram including total population and number of HDOs per county: Dot_HDO_total_population.spv
    • Pearson correlation table between the total population, elderly population, and number of HDOs per county: Pearson_Correlation_populations_HDOs_number.spv
    • Regression curve estimation with total population and number of HDOs, (Types of analyzed equations: Linear, Logarithmic, Inverse, Quadratic, Cubic, Compound, Power, S, Growth, Exponential, Logistic, with summary and ANOVA analysis table): Curve_estimation_total_population.spv

    For easier readability, the files have been provided in both SPV and PDF formats.

    The translation of these supplementary files into English was completed on 23rd Sept. 2024.

    If you have any further questions regarding the dataset, please contact the corresponding author: domjan.peter@phd.semmelweis.hu

  3. a

    Lights On The Atlantic

    • agic-symposium-maps-and-apps-agic.hub.arcgis.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AZGeo Data Hub (2025). Lights On The Atlantic [Dataset]. https://agic-symposium-maps-and-apps-agic.hub.arcgis.com/datasets/azgeo::lights-on-the-atlantic
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    AZGeo Data Hub
    Description

    This map represents a research effort focused upon collecting data on the age, height, and history of each lighthouse that shines upon the Atlantic Ocean. Data were manually collected from local, national, and international libraries including Lighthouse Friends, the United States National Park Service, and Wikipedia. The map was produced in ArcGIS Pro for construction of the lighthouse dataset and initial layout, then exported to Blender (3D rendering and animation software). The 2D terrain was then extruded to become a 3D elevation model, and the Atlantic Ocean created as a simulated water surface. Each lighthouse point was transformed into a 3D light source and a true light simulation performed on the scene to render the partially-illuminated terrain and water based on the presence of lighthouses, forming a heatmap (or lightmap!) to underlay the data itself. Lighthouses are shown by height, age, and whether they still serve as a navigational aid.Other Information:The lighthouses dataset was manually assembled by the authors for a variety of sources, including Wikipedia, the National Park Service, Lighthouse Friends, travel and tourism guides, and more. Shuttle Radar Topography Mission (SRTM) 30-meter Digital Elevation Model (DEM) was used to generate the 3D elevation model and enable light and shadow simulation in Blender. Software used: QGIS, Blender, Adobe Photoshop, Adobe InDesign. Map created by Michael Huff, GISP, and Ryan Huff, 2025.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Trust for Public Land (2022). Heat Severity - USA 2021 [Dataset]. https://www.heat.gov/datasets/cdd2ffd5a2fc414ca1a5e676f5fce3e3

Heat Severity - USA 2021

Explore at:
Dataset updated
Jan 6, 2022
Dataset authored and provided by
The Trust for Public Land
Area covered
Description

Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

Search
Clear search
Close search
Google apps
Main menu