78 datasets found
  1. Number of heating degree-days in the U.S. 1950-2024

    • statista.com
    • ai-chatbox.pro
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of heating degree-days in the U.S. 1950-2024 [Dataset]. https://www.statista.com/statistics/245632/number-of-heating-degree-days-in-the-united-states/
    Explore at:
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    There were around 3,688 heating degree-days in the United States in 2024. Degree-days are relative measurements of outdoor air temperature. Heating degree-days are deviations below the mean daily temperature of 65 degrees Fahrenheit (ca. 18 degree Celsius). Heating degree-days were more numerous in the mid 20th century.

  2. Heating and Cooling Degree Day by State, 1960–2023 Versus 1895–1959

    • catalog.data.gov
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Air and Radiation (Publisher) (2025). Heating and Cooling Degree Day by State, 1960–2023 Versus 1895–1959 [Dataset]. https://catalog.data.gov/dataset/heating-and-cooling-degree-day-by-state-19602023-versus-189519596
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This indicator shows how heating and cooling degree days have changed by state, based on a comparison of the first 65 years of available data (1895–1959) with the most recent 64 years (1960–2023). For more information: https://www.epa.gov/climate-indicators.

  3. United States Heating Degree Days

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Heating Degree Days [Dataset]. https://www.ceicdata.com/en/united-states/environmental-climate-risk/heating-degree-days
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    United States
    Description

    United States Heating Degree Days data was reported at 6,469.100 Degrees Celsius in 2020. This records a decrease from the previous number of 6,651.470 Degrees Celsius for 2019. United States Heating Degree Days data is updated yearly, averaging 6,898.870 Degrees Celsius from Dec 1970 (Median) to 2020, with 51 observations. The data reached an all-time high of 7,479.710 Degrees Celsius in 1972 and a record low of 6,089.410 Degrees Celsius in 2016. United States Heating Degree Days data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Environmental: Climate Risk. A heating degree day (HDD) is a measurement designed to track energy use. It is the number of degrees that a day's average temperature is below 18°C (65°F). Daily degree days are accumulated to obtain annual values.;World Bank, Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org;;

  4. Annual Heating Degree Days - Projections (12km)

    • climatedataportal.metoffice.gov.uk
    Updated May 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Annual Heating Degree Days - Projections (12km) [Dataset]. https://climatedataportal.metoffice.gov.uk/datasets/726accfe94f04313a8c2221a73ae865d
    Explore at:
    Dataset updated
    May 22, 2023
    Dataset authored and provided by
    Met Officehttp://www.metoffice.gov.uk/
    Area covered
    Description

    [Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average percentage change between the 'lower' values before and after this update is -1%.]What does the data show? A Heating Degree Day (HDD) is a day in which the average temperature is below 15.5°C. It is the number of degrees above this threshold that counts as a Heating Degree Day. For example if the average temperature for a specific day is 15°C, this would contribute 0.5 Heating Degree Days to the annual sum, alternatively an average temperature of 10.5°C would contribute 5 Heating Degree Days. Given the data shows the annual sum of Heating Degree Days, this value can be above 365 in some parts of the UK.Annual Heating Degree Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of HDD to previous values.What are the possible societal impacts?Heating Degree Days indicate the energy demand for heating due to cold days. A higher number of HDD means an increase in power consumption for heating, therefore this index is useful for predicting future changes in energy demand for heating.What is a global warming level?Annual Heating Degree Days are calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Heating Degree Days, an average is taken across the 21 year period. Therefore, the Annual Heating Degree Days show the number of heating degree days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each warming level and two baselines. They are named ‘HDD’ (Heating Degree Days), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. E.g. 'HDD 2.5 median' is the median value for the 2.5°C projection. Decimal points are included in field aliases but not field names e.g. 'HDD 2.5 median' is 'HDD_25_median'. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HDD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, Annual Heating Degree Days were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

  5. d

    Climate Change Pressures Growing Degree Days (Map Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Climate Change Pressures Growing Degree Days (Map Service) [Dataset]. https://catalog.data.gov/dataset/climate-change-pressures-growing-degree-days-map-service-5b2ce
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Forest Service
    Description

    Evaluating multiple signals of climate change across the conterminous United States during three 30-year periods (2010�2039, 2040�2069, 2070�2099) during this century to a baseline period (1980�2009) emphasizes potential changes for growing degree days (GDD), plant hardiness zones (PHZ), and heat zones. These indices were derived using the CCSM4 and GFDL CM3 models under the representative concentration pathways 4.5 and 8.5, respectively, and included in Matthews et al. (2018). Daily temperature was downscaled by Maurer et al.�(https://doi.org/10.1029/2007EO470006 at a 1/8 degree grid scale and used to obtain growing degree days, plant hardiness zones, and heat zones.�Each of these indices provides unique information about plant health related to changes in climatic conditions that influence establishment, growth, and survival. These data and the calculated changes are provided as 14 individual IMG files for each index to assist with management planning and decision making into the future. For each of the four indices the following are included: two baseline files (1980�2009), three files representing 30-year periods for the scenario CCSM4 under RCP 4.5 along with three files of changes, and three files representing 30-year periods for the scenario GFDL CM3 under RCP 8.5 along with three files of changes. Growing degree days address an important component to general patterns of plant growth by accumulating the degree days across the growing season. This metric provides a level of detail related to defining the growing season potential. Here, we evaluate the accumulation of growing degree days at or above 5 �C (41 �F), assuming that limited growth occurs below 5 �C.�Specifically, we calculate growing degree days by first calculating the average daily temperature, based on the maximum and minimum projected daily temperature. We then subtract 5 �C from each mean value and then accumulate the positive difference values for all days within each year. The mean GDD values for the conterminous United States during the baseline period ranged from less than 100 to over 7,000 degree days, increasing from north to south with highest values in the Florida panhandle, southern Texas, southwestern Arizona, and southeastern California. GDD projections throughout the century suggest a ubiquitous increase across the United States with slightly less change in the Northeast and much greater increases throughout the southern United States under the high scenario. Original data and associated metadata can be downloaded from this website:�https://www.fs.usda.gov/rds/archive/Product/RDS-2019-0001

  6. h

    Cooling Degree Days RCP 8.5

    • heat.gov
    • climate-arcgis-content.hub.arcgis.com
    • +1more
    Updated Aug 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Climate Solutions (2021). Cooling Degree Days RCP 8.5 [Dataset]. https://www.heat.gov/maps/climatesolutions::cooling-degree-days-rcp-8-5/about
    Explore at:
    Dataset updated
    Aug 19, 2021
    Dataset authored and provided by
    Climate Solutions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Degree days are based on the assumption that when the outside temperature is 65°F, we don't need heating or cooling to be comfortable. Cooling Degree Days (CDD) are the difference between the daily temperature mean (high temperature plus low temperature divided by two) and 65°F. In essence, it tells us how many degrees we need to cool our houses/buildings by each day to achieve that "comfortable" level. More information on CCDs can be found here. This layer shows the total number of CDDs needed per year over the average period of 2036-2065. This information is sourced from the high resolution LOCA climate models used in the 4th National Climate Assessment. Specifically, we are showing CDDs under a high CO2 emissions scenario (RCP 8.5), which is, at this point, the most realistic scenario. Time Extent: Annual average from 2036-2065Units: degree daysCell Size: 1/16th degree (~6 km)Source Type: StretchedPixel Type: 32 Bit floating pointData Projection: GCS WGS84Extent: United States plus some of Canada and MexicoSource: CMIP5 Localized Constructed Analogs (LOCA)What can this layer be used for?In addition to mapping, this ArcGIS Imagery for ArcGIS Online tile imagery layer supports spatial analysis, and contains 32-bit floating point values for CDD. Original data can be downloaded from the LOCA-Viewer.

  7. U.S. Climate Normals 2020: U.S. Annual/Seasonal Climate Normals (1991-2020)

    • catalog.data.gov
    • ncei.noaa.gov
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Centers for Environmental Information/NOAA (Principal Investigator) (2023). U.S. Climate Normals 2020: U.S. Annual/Seasonal Climate Normals (1991-2020) [Dataset]. https://catalog.data.gov/dataset/u-s-climate-normals-2020-u-s-annual-seasonal-climate-normals-1991-20201
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Annual/Seasonal Climate Normals for 1991 to 2020 are 30-year averages of meteorological parameters that provide users the information needed to understand typical climate conditions for thousands of locations across the United States, as well as U.S. Territories and Commonwealths, and the Compact of Free Association nations. The stations used include those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the U.S. Climate Reference Network (USCRN) and other automated observation stations. In addition, precipitation normals for stations from the U.S. Snow Telemetry (SNOTEL) Network and the citizen-science Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network are also available. The Annual/Seasonal Climate Normals dataset includes various derived products such as air temperature normals (including maximum and minimum temperature normals, heating and cooling degree day normals, and others), precipitation normals (including precipitation and snowfall totals, and percentiles, frequencies and other statistics of precipitation, snowfall, and snow depth), and agricultural normals (growing degree days (GDDs), lengths of growing seasons, probabilities of first or last temperature threshold exceedances. All data utilized in the computation of the 1991-2020 Climate Normals were taken from the Global Historical Climatology Network-Daily and -Monthly datasets. Temperatures were homogenized, adjusted for time-of-observation, and made serially complete where possible based on information from nearby stations. Precipitation totals were also made serially complete where possible based using nearby stations. The source datasets (including intermediate datasets used in the computation of products) are also archived at NOAA NCEI. A comparatively small number of station normals sets (~50) have been added as Version 1.0.1 to correct quality issues or because additional historical data during the 1991-2020 period has been ingested.

  8. d

    Climatography of the United States

    • datadiscoverystudio.org
    • ncei.noaa.gov
    • +2more
    pdf, xml
    Updated Mar 15, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Climatography of the United States [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f4c3ba61680542ad9ee0ef5bbd10637a/html
    Explore at:
    pdf, xml(1)Available download formats
    Dataset updated
    Mar 15, 2011
    Area covered
    United States,
    Description

    Numbered series of NOAA publications that contain environmental information climate summaries and station normals. Each series contains a volume for each state, climate division, or station. Series that are or would be found in this library are as follows: -- No. 10: Climatic Summary of the United States, establishment of stations to 1930, by climate division -- No. 11: Climatic Summary of the United States-Supplement for 1931-52, by state -- No. 20: Monthly Station Climate Summaries for 1971-2000. Station summaries of particular interest to agriculture, industry, and engineering applications. These summaries contain a variety of statistics for temperature, precipitation, snow, freeze dates, and degree day elements for 4,273 stations. -- No. 20: Station Climatological Summaries, station list through 1985. -- No. 20: Supplement 1: Frost/Freeze Data. -- No. 30: Summary of Hourly Observations, data 1949-55 (varies), by station. -- No. 60: Climates of the States, published 1960, by state. -- No. 81: Decennial Census of United States Climate - Monthly Normals of Temperature, Precipitation, and Heating and Cooling Degree Days, by state, reused for 30 year periods 1931-60 thru 1971-2000, by station. -- No. 81: Supplement 1: Monthly Precipitation Probabilities. -- No. 81: Supplement 2: Annual Degree Days to Selected Bases. -- No. 82: Decennial Census of United States Climate - Summary of Hourly Observations 1951-1960, by station. -- No. 84: Daily Station Normals of Temperature, Precipitation and Heating and Cooling Degree Days, by station. -- No. 85: Monthly Divisional Normals and Standard Deviations of Temperature, Precipitation, and Heating and Cooling Degree Days, by climate division. -- No. 86: Decennial Census of United States Climate - Climatic Summary of the U.S. 1951-1960, by state. -- No. 90: Airport Climatological Summary, 1965-1974, by station.

  9. 美国 Heating Degree Days

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, 美国 Heating Degree Days [Dataset]. https://www.ceicdata.com/zh-hans/united-states/environmental-climate-risk/heating-degree-days
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    美国
    Description

    (停止更新)Heating Degree Days在12-01-2020达6,469.100摄氏度,相较于12-01-2019的6,651.470摄氏度有所下降。(停止更新)Heating Degree Days数据按年更新,12-01-1970至12-01-2020期间平均值为6,898.870摄氏度,共51份观测结果。该数据的历史最高值出现于12-01-1972,达7,479.710摄氏度,而历史最低值则出现于12-01-2016,为6,089.410摄氏度。CEIC提供的(停止更新)Heating Degree Days数据处于定期更新的状态,数据来源于World Bank,数据归类于全球数据库的美国 – Table US.World Bank.WDI: Environmental: Climate Risk。

  10. h

    U.S. Climate Thresholds - LOCA RCP 4.5 Early Century

    • heat.gov
    • colorado-river-portal.usgs.gov
    • +3more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). U.S. Climate Thresholds - LOCA RCP 4.5 Early Century [Dataset]. https://www.heat.gov/maps/80bb02560650448f95fc8f5d64402a52
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The US Global Change Research Program sponsors the semi-annual National Climate Assessment, which is the authoritative analysis of climate change and its potential impacts in the United States. The 4th National Climate Assessment (NCA4), issued in 2018, used high resolution, downscaled LOCA climate data for many of its national and regional analyses. The LOCA downscaling was applied to multi-model mean weighted averages, using the following 32 CMIP5 model ensemble:ACCESS1-0, ACCESS1-3, bcc-csm1-1, bcc-csm1-1-m, CanESM2, CCSM4, CESM1-BGC, CESM1-CAM5, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, EC EARTH, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-p1, GISS-E2-R-p1, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-M.All of the LOCA variables used in NCA4 are presented here. Many are thresholded to provide 47 actionable statistics, like days with precipitation greater than 3", length of the growing season, or days above 90 degrees F. Time RangesStatistics for each variables were calculated over a 30-year period. Four different time ranges are provided:Historical: 1976-2005Early-Century: 2016-2045Mid-Century: 2036-2065Late-Century: 2070-2099Climate ScenariosClimate models use estimates of greenhouse gas concentrations to predict overall change. These difference scenarios are called the Relative Concentration Pathways. Two different RCPs are presented here: RCP 4.5 and RCP 8.5. The number indicates the amount of radiative forcing(watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but RCP 4.5 aligns with the international targets of the COP-26 agreement, while RCP 8.5 is aligns with a more "business as usual" approach. Detailed documentation and the original data from USGCRP, processed by NOAA's National Climate Assessment Technical Support Unit at the North Carolina Institute for Climate Studies, can be accessed from the NCA Atlas. Variable DefinitionsCooling Degree Days: Cooling degree days (annual cumulative number of degrees by which the daily average temperature is greater than 65°F) [degree days (degF)]Consecutive Dry Days: Annual maximum number of consecutive dry days (days with total precipitation less than 0.01 inches)Consecutive Dry Days Jan Jul Aug: Summer maximum number of consecutive dry days (days with total precipitation less than 0.01 inches in June, July, and August)Consecutive Wet Days: Annual maximum number of consecutive wet days (days with total precipitation greater than or equal to 0.01 inches)First Freeze Day: Date of the first fall freeze (annual first occurrence of a minimum temperature at or below 32degF in the fall)Growing Degree Days: Growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F) [degree days (degF)]Growing Degree Days Modified: Modified growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F; before calculating the daily average temperatures, daily maximum temperatures above 86°F and daily minimum temperatures below 50°F are set to those values) [degree days (degF)]growing-season: Length of the growing (frost-free) season (the number of days between the last occurrence of a minimum temperature at or below 32degF in the spring and the first occurrence of a minimum temperature at or below 32degF in the fall)Growing Season 28F: Length of the growing season, 28°F threshold (the number of days between the last occurrence of a minimum temperature at or below 28°F in the spring and the first occurrence of a minimum temperature at or below 28°F in the fall)Growing Season 41F: Length of the growing season, 41°F threshold (the number of days between the last occurrence of a minimum temperature at or below 41°F in the spring and the first occurrence of a minimum temperature at or below 41°F in the fall)Heating Degree Days: Heating degree days (annual cumulative number of degrees by which the daily average temperature is less than 65°F) [degree days (degF)]Last Freeze Day: Date of the last spring freeze (annual last occurrence of a minimum temperature at or below 32degF in the spring)Precip Above 99th pctl: Annual total precipitation for all days exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip Annual Total: Annual total precipitation [inches]Precip Days Above 99th pctl: Annual number of days with precipitation exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip 1in: Annual number of days with total precipitation greater than 1 inchPrecip 2in: Annual number of days with total precipitation greater than 2 inchesPrecip 3in: Annual number of days with total precipitation greater than 3 inchesPrecip 4in: Annual number of days with total precipitation greater than 4 inchesPrecip Max 1 Day: Annual highest precipitation total for a single day [inches]Precip Max 5 Day: Annual highest precipitation total over a 5-day period [inches]Daily Avg Temperature: Daily average temperature [degF]Daily Max Temperature: Daily maximum temperature [degF]Temp Max Days Above 99th pctl: Annual number of days with maximum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Max Days Below 1st pctl: Annual number of days with maximum temperature lower than the 1st percentile, calculated with reference to 1976-2005Days Above 100F: Annual number of days with a maximum temperature greater than 100degFDays Above 105F: Annual number of days with a maximum temperature greater than 105degFDays Above 110F: Annual number of days with a maximum temperature greater than 110degFDays Above 115F: Annual number of days with a maximum temperature greater than 115degFTemp Max 1 Day: Annual single highest maximum temperature [degF]Days Above 32F: Annual number of icing days (days with a maximum temperature less than 32degF)Temp Max 5 Day: Annual highest maximum temperature averaged over a 5-day period [degF]Days Above 86F: Annual number of days with a maximum temperature greater than 86degFDays Above 90F: Annual number of days with a maximum temperature greater than 90degFDays Above 95F: Annual number of days with a maximum temperature greater than 95degFTemp Min: Daily minimum temperature [degF]Temp Min Days Above 75F: Annual number of days with a minimum temperature greater than 75degFTemp Min Days Above 80F: Annual number of days with a minimum temperature greater than 80degFTemp Min Days Above 85F: Annual number of days with a minimum temperature greater than 85degFTemp Min Days Above 90F: Annual number of days with a minimum temperature greater than 90degFTemp Min Days Above 99th pctl: Annual number of days with minimum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Min Days Below 1st pctl: Annual number of days with minimum temperature lower than the 1st percentile, calculated with reference to 1976-2005Temp Min Days Below 28F: Annual number of days with a minimum temperature less than 28degFTemp Min Max 5 Day: Annual highest minimum temperature averaged over a 5-day period [degF]Temp Min 1 Day: Annual single lowest minimum temperature [degF]Temp Min 32F: Annual number of frost days (days with a minimum temperature less than 32degF)Temp Min 5 Day: Annual lowest minimum temperature averaged over a 5-day period [degF]For For freeze-related variables:The first fall freeze is defined as the date of the first occurrence of 32degF or lower in the nine months starting midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The last spring freeze is defined as the date of the last occurrence of 32degF or lower in the nine months prior to midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The growing season is defined as the number of days between the last occurrence of 28degF/32degF/41degF or lower in the nine months prior to midnight August 1 and the first occurrence of 28degF/32degF/41degF or lower in the nine months starting August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 28degF/32degF/41degF or lower are excluded from the analysis.No freeze occurrence, value = 999

  11. h

    U.S. Climate Thresholds - LOCA RCP 8.5 Late Century

    • heat.gov
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). U.S. Climate Thresholds - LOCA RCP 8.5 Late Century [Dataset]. https://www.heat.gov/maps/2510552961674f91904139447bb0204f
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The US Global Change Research Program sponsors the semi-annual National Climate Assessment, which is the authoritative analysis of climate change and its potential impacts in the United States. The 4th National Climate Assessment (NCA4), issued in 2018, used high resolution, downscaled LOCA climate data for many of its national and regional analyses. The LOCA downscaling was applied to multi-model mean weighted averages, using the following 32 CMIP5 model ensemble:ACCESS1-0, ACCESS1-3, bcc-csm1-1, bcc-csm1-1-m, CanESM2, CCSM4, CESM1-BGC, CESM1-CAM5, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, EC EARTH, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-p1, GISS-E2-R-p1, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-M.All of the LOCA variables used in NCA4 are presented here. Many are thresholded to provide 47 actionable statistics, like days with precipitation greater than 3", length of the growing season, or days above 90 degrees F. Time RangesStatistics for each variables were calculated over a 30-year period. Four different time ranges are provided:Historical: 1976-2005Early-Century: 2016-2045Mid-Century: 2036-2065Late-Century: 2070-2099Climate ScenariosClimate models use estimates of greenhouse gas concentrations to predict overall change. These difference scenarios are called the Relative Concentration Pathways. Two different RCPs are presented here: RCP 4.5 and RCP 8.5. The number indicates the amount of radiative forcing(watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but RCP 4.5 aligns with the international targets of the COP-26 agreement, while RCP 8.5 is aligns with a more "business as usual" approach. Detailed documentation and the original data from USGCRP, processed by NOAA's National Climate Assessment Technical Support Unit at the North Carolina Institute for Climate Studies, can be accessed from the NCA Atlas. Variable DefinitionsCooling Degree Days: Cooling degree days (annual cumulative number of degrees by which the daily average temperature is greater than 65°F) [degree days (degF)]Consecutive Dry Days: Annual maximum number of consecutive dry days (days with total precipitation less than 0.01 inches)Consecutive Dry Days Jan Jul Aug: Summer maximum number of consecutive dry days (days with total precipitation less than 0.01 inches in June, July, and August)Consecutive Wet Days: Annual maximum number of consecutive wet days (days with total precipitation greater than or equal to 0.01 inches)First Freeze Day: Date of the first fall freeze (annual first occurrence of a minimum temperature at or below 32degF in the fall)Growing Degree Days: Growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F) [degree days (degF)]Growing Degree Days Modified: Modified growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F; before calculating the daily average temperatures, daily maximum temperatures above 86°F and daily minimum temperatures below 50°F are set to those values) [degree days (degF)]growing-season: Length of the growing (frost-free) season (the number of days between the last occurrence of a minimum temperature at or below 32degF in the spring and the first occurrence of a minimum temperature at or below 32degF in the fall)Growing Season 28F: Length of the growing season, 28°F threshold (the number of days between the last occurrence of a minimum temperature at or below 28°F in the spring and the first occurrence of a minimum temperature at or below 28°F in the fall)Growing Season 41F: Length of the growing season, 41°F threshold (the number of days between the last occurrence of a minimum temperature at or below 41°F in the spring and the first occurrence of a minimum temperature at or below 41°F in the fall)Heating Degree Days: Heating degree days (annual cumulative number of degrees by which the daily average temperature is less than 65°F) [degree days (degF)]Last Freeze Day: Date of the last spring freeze (annual last occurrence of a minimum temperature at or below 32degF in the spring)Precip Above 99th pctl: Annual total precipitation for all days exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip Annual Total: Annual total precipitation [inches]Precip Days Above 99th pctl: Annual number of days with precipitation exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip 1in: Annual number of days with total precipitation greater than 1 inchPrecip 2in: Annual number of days with total precipitation greater than 2 inchesPrecip 3in: Annual number of days with total precipitation greater than 3 inchesPrecip 4in: Annual number of days with total precipitation greater than 4 inchesPrecip Max 1 Day: Annual highest precipitation total for a single day [inches]Precip Max 5 Day: Annual highest precipitation total over a 5-day period [inches]Daily Avg Temperature: Daily average temperature [degF]Daily Max Temperature: Daily maximum temperature [degF]Temp Max Days Above 99th pctl: Annual number of days with maximum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Max Days Below 1st pctl: Annual number of days with maximum temperature lower than the 1st percentile, calculated with reference to 1976-2005Days Above 100F: Annual number of days with a maximum temperature greater than 100degFDays Above 105F: Annual number of days with a maximum temperature greater than 105degFDays Above 110F: Annual number of days with a maximum temperature greater than 110degFDays Above 115F: Annual number of days with a maximum temperature greater than 115degFTemp Max 1 Day: Annual single highest maximum temperature [degF]Days Above 32F: Annual number of icing days (days with a maximum temperature less than 32degF)Temp Max 5 Day: Annual highest maximum temperature averaged over a 5-day period [degF]Days Above 86F: Annual number of days with a maximum temperature greater than 86degFDays Above 90F: Annual number of days with a maximum temperature greater than 90degFDays Above 95F: Annual number of days with a maximum temperature greater than 95degFTemp Min: Daily minimum temperature [degF]Temp Min Days Above 75F: Annual number of days with a minimum temperature greater than 75degFTemp Min Days Above 80F: Annual number of days with a minimum temperature greater than 80degFTemp Min Days Above 85F: Annual number of days with a minimum temperature greater than 85degFTemp Min Days Above 90F: Annual number of days with a minimum temperature greater than 90degFTemp Min Days Above 99th pctl: Annual number of days with minimum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Min Days Below 1st pctl: Annual number of days with minimum temperature lower than the 1st percentile, calculated with reference to 1976-2005Temp Min Days Below 28F: Annual number of days with a minimum temperature less than 28degFTemp Min Max 5 Day: Annual highest minimum temperature averaged over a 5-day period [degF]Temp Min 1 Day: Annual single lowest minimum temperature [degF]Temp Min 32F: Annual number of frost days (days with a minimum temperature less than 32degF)Temp Min 5 Day: Annual lowest minimum temperature averaged over a 5-day period [degF]For For freeze-related variables:The first fall freeze is defined as the date of the first occurrence of 32degF or lower in the nine months starting midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The last spring freeze is defined as the date of the last occurrence of 32degF or lower in the nine months prior to midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The growing season is defined as the number of days between the last occurrence of 28degF/32degF/41degF or lower in the nine months prior to midnight August 1 and the first occurrence of 28degF/32degF/41degF or lower in the nine months starting August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 28degF/32degF/41degF or lower are excluded from the analysis.No freeze occurrence, value = 999

  12. c

    U.S. Climate Thresholds - LOCA RCP 8.5 Early Century

    • resilience.climate.gov
    • heat.gov
    • +4more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). U.S. Climate Thresholds - LOCA RCP 8.5 Early Century [Dataset]. https://resilience.climate.gov/maps/df33e2955f8344ccb3ced9c64bd1ff59
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The US Global Change Research Program sponsors the semi-annual National Climate Assessment, which is the authoritative analysis of climate change and its potential impacts in the United States. The 4th National Climate Assessment (NCA4), issued in 2018, used high resolution, downscaled LOCA climate data for many of its national and regional analyses. The LOCA downscaling was applied to multi-model mean weighted averages, using the following 32 CMIP5 model ensemble:ACCESS1-0, ACCESS1-3, bcc-csm1-1, bcc-csm1-1-m, CanESM2, CCSM4, CESM1-BGC, CESM1-CAM5, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, EC EARTH, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-p1, GISS-E2-R-p1, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-M.All of the LOCA variables used in NCA4 are presented here. Many are thresholded to provide 47 actionable statistics, like days with precipitation greater than 3", length of the growing season, or days above 90 degrees F. Time RangesStatistics for each variables were calculated over a 30-year period. Four different time ranges are provided:Historical: 1976-2005Early-Century: 2016-2045Mid-Century: 2036-2065Late-Century: 2070-2099Climate ScenariosClimate models use estimates of greenhouse gas concentrations to predict overall change. These difference scenarios are called the Relative Concentration Pathways. Two different RCPs are presented here: RCP 4.5 and RCP 8.5. The number indicates the amount of radiative forcing(watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but RCP 4.5 aligns with the international targets of the COP-26 agreement, while RCP 8.5 is aligns with a more "business as usual" approach. Detailed documentation and the original data from USGCRP, processed by NOAA's National Climate Assessment Technical Support Unit at the North Carolina Institute for Climate Studies, can be accessed from the NCA Atlas. Variable DefinitionsCooling Degree Days: Cooling degree days (annual cumulative number of degrees by which the daily average temperature is greater than 65°F) [degree days (degF)]Consecutive Dry Days: Annual maximum number of consecutive dry days (days with total precipitation less than 0.01 inches)Consecutive Dry Days Jan Jul Aug: Summer maximum number of consecutive dry days (days with total precipitation less than 0.01 inches in June, July, and August)Consecutive Wet Days: Annual maximum number of consecutive wet days (days with total precipitation greater than or equal to 0.01 inches)First Freeze Day: Date of the first fall freeze (annual first occurrence of a minimum temperature at or below 32degF in the fall)Growing Degree Days: Growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F) [degree days (degF)]Growing Degree Days Modified: Modified growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F; before calculating the daily average temperatures, daily maximum temperatures above 86°F and daily minimum temperatures below 50°F are set to those values) [degree days (degF)]growing-season: Length of the growing (frost-free) season (the number of days between the last occurrence of a minimum temperature at or below 32degF in the spring and the first occurrence of a minimum temperature at or below 32degF in the fall)Growing Season 28F: Length of the growing season, 28°F threshold (the number of days between the last occurrence of a minimum temperature at or below 28°F in the spring and the first occurrence of a minimum temperature at or below 28°F in the fall)Growing Season 41F: Length of the growing season, 41°F threshold (the number of days between the last occurrence of a minimum temperature at or below 41°F in the spring and the first occurrence of a minimum temperature at or below 41°F in the fall)Heating Degree Days: Heating degree days (annual cumulative number of degrees by which the daily average temperature is less than 65°F) [degree days (degF)]Last Freeze Day: Date of the last spring freeze (annual last occurrence of a minimum temperature at or below 32degF in the spring)Precip Above 99th pctl: Annual total precipitation for all days exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip Annual Total: Annual total precipitation [inches]Precip Days Above 99th pctl: Annual number of days with precipitation exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip 1in: Annual number of days with total precipitation greater than 1 inchPrecip 2in: Annual number of days with total precipitation greater than 2 inchesPrecip 3in: Annual number of days with total precipitation greater than 3 inchesPrecip 4in: Annual number of days with total precipitation greater than 4 inchesPrecip Max 1 Day: Annual highest precipitation total for a single day [inches]Precip Max 5 Day: Annual highest precipitation total over a 5-day period [inches]Daily Avg Temperature: Daily average temperature [degF]Daily Max Temperature: Daily maximum temperature [degF]Temp Max Days Above 99th pctl: Annual number of days with maximum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Max Days Below 1st pctl: Annual number of days with maximum temperature lower than the 1st percentile, calculated with reference to 1976-2005Days Above 100F: Annual number of days with a maximum temperature greater than 100degFDays Above 105F: Annual number of days with a maximum temperature greater than 105degFDays Above 110F: Annual number of days with a maximum temperature greater than 110degFDays Above 115F: Annual number of days with a maximum temperature greater than 115degFTemp Max 1 Day: Annual single highest maximum temperature [degF]Days Above 32F: Annual number of icing days (days with a maximum temperature less than 32degF)Temp Max 5 Day: Annual highest maximum temperature averaged over a 5-day period [degF]Days Above 86F: Annual number of days with a maximum temperature greater than 86degFDays Above 90F: Annual number of days with a maximum temperature greater than 90degFDays Above 95F: Annual number of days with a maximum temperature greater than 95degFTemp Min: Daily minimum temperature [degF]Temp Min Days Above 75F: Annual number of days with a minimum temperature greater than 75degFTemp Min Days Above 80F: Annual number of days with a minimum temperature greater than 80degFTemp Min Days Above 85F: Annual number of days with a minimum temperature greater than 85degFTemp Min Days Above 90F: Annual number of days with a minimum temperature greater than 90degFTemp Min Days Above 99th pctl: Annual number of days with minimum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Min Days Below 1st pctl: Annual number of days with minimum temperature lower than the 1st percentile, calculated with reference to 1976-2005Temp Min Days Below 28F: Annual number of days with a minimum temperature less than 28degFTemp Min Max 5 Day: Annual highest minimum temperature averaged over a 5-day period [degF]Temp Min 1 Day: Annual single lowest minimum temperature [degF]Temp Min 32F: Annual number of frost days (days with a minimum temperature less than 32degF)Temp Min 5 Day: Annual lowest minimum temperature averaged over a 5-day period [degF]For For freeze-related variables:The first fall freeze is defined as the date of the first occurrence of 32degF or lower in the nine months starting midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The last spring freeze is defined as the date of the last occurrence of 32degF or lower in the nine months prior to midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The growing season is defined as the number of days between the last occurrence of 28degF/32degF/41degF or lower in the nine months prior to midnight August 1 and the first occurrence of 28degF/32degF/41degF or lower in the nine months starting August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 28degF/32degF/41degF or lower are excluded from the analysis.No freeze occurrence, value = 999

  13. m

    Data from: Datasets for Residential GSHP Analysis by Climate in the United...

    • data.mendeley.com
    • narcis.nl
    Updated Feb 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rebecca Neves (2020). Datasets for Residential GSHP Analysis by Climate in the United States [Dataset]. http://doi.org/10.17632/xnbwy8s2gy.1
    Explore at:
    Dataset updated
    Feb 26, 2020
    Authors
    Rebecca Neves
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This data captures climate information and HVAC energy use for a baseline prototype home and for a replacement alternative energy home. The baseline home is a traditional DX cooling/gas furnace system, and the alternate system is a geothermal heat pump. Cooling degree days (CDD), heating degree days (HDD) and relative humidity were gathered from historical weather data for 12 cities across the contiguous United States. Geothermal heat pump coefficients were generated as inputs to EnergyPlus simulation software. These heat pump coefficients are generated by compiling heat pump performance data from 5 market leading, high efficiency residential geothermal heat pump manufacturers. These coefficients can be used to represent a general, market available heat pump in 2-ton, 3-ton, and 4-ton capacities. Baseline prototype home energy use by city was generated by EnergyPlus using the prototype home download file from www.energy.gov and the respective weather file for that city. This data can be interpreted as energy use per month by certain HVAC components. The GSHP home energy use by city was generated from EnergyPlus and the respective city weather file. The GSHP model was created by the authors to model the alternate closed loop, GSHP system.

  14. n

    U.S. Historical Climatological Series

    • cmr.earthdata.nasa.gov
    not provided
    Updated Dec 31, 2000
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2000). U.S. Historical Climatological Series [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2102892425-NOAA_NCEI.html
    Explore at:
    not provided(1 KB)Available download formats
    Dataset updated
    Dec 31, 2000
    Time period covered
    Jan 1, 1931 - Dec 31, 2000
    Area covered
    United States,
    Description

    Historical Climatology Series (HCS) 4 and 5 is a series of digital products produced by the National Climatic Data Center (NCDC). HCS 4 and 5 is a subseries in a larger series of the U.S. Climate Normals for 1971-2000. HCS 4-1 is state, regional and national monthly and annual temperatures, weighted by area, for the normals period 1971-2000, plus earlier thirty-year normals periods starting in 1931. HCS 4-2 is similar to HCS 4-1, except it is for precipitation. HCS 4-3 is similar to HCS 4-1 and 4-2, except it is state, regional and national seasonal temperatures and precipitation. HCS 5-1 is state, regional, and national heating degree days, weighted by population. HCS 5-2 is similar to HCS 5-1, except it is for cooling degree days. The series is archived as the single digital data set DSI-9641E.

  15. u

    U.S. Climate Thresholds - LOCA Historical

    • colorado-river-portal.usgs.gov
    • resilience.climate.gov
    • +2more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). U.S. Climate Thresholds - LOCA Historical [Dataset]. https://colorado-river-portal.usgs.gov/maps/d05d0d54334d4b2b84aae67ba2cc00c0
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The US Global Change Research Program sponsors the semi-annual National Climate Assessment, which is the authoritative analysis of climate change and its potential impacts in the United States. The 4th National Climate Assessment (NCA4), issued in 2018, used high resolution, downscaled LOCA climate data for many of its national and regional analyses. The LOCA downscaling was applied to multi-model mean weighted averages, using the following 32 CMIP5 model ensemble:ACCESS1-0, ACCESS1-3, bcc-csm1-1, bcc-csm1-1-m, CanESM2, CCSM4, CESM1-BGC, CESM1-CAM5, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, EC EARTH, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-p1, GISS-E2-R-p1, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM, MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, NorESM1-M.All of the LOCA variables used in NCA4 are presented here. Many are thresholded to provide 47 actionable statistics, like days with precipitation greater than 3", length of the growing season, or days above 90 degrees F. Time RangesStatistics for each variables were calculated over a 30-year period. Four different time ranges are provided:Historical: 1976-2005Early-Century: 2016-2045Mid-Century: 2036-2065Late-Century: 2070-2099Climate ScenariosClimate models use estimates of greenhouse gas concentrations to predict overall change. These difference scenarios are called the Relative Concentration Pathways. Two different RCPs are presented here: RCP 4.5 and RCP 8.5. The number indicates the amount of radiative forcing(watts per meter square) associated with the greenhouse gas concentration scenario in the year 2100 (higher forcing = greater warming). It is unclear which scenario will be the most likely, but RCP 4.5 aligns with the international targets of the COP-26 agreement, while RCP 8.5 is aligns with a more "business as usual" approach. Detailed documentation and the original data from USGCRP, processed by NOAA's National Climate Assessment Technical Support Unit at the North Carolina Institute for Climate Studies, can be accessed from the NCA Atlas. Variable DefinitionsCooling Degree Days: Cooling degree days (annual cumulative number of degrees by which the daily average temperature is greater than 65°F) [degree days (degF)]Consecutive Dry Days: Annual maximum number of consecutive dry days (days with total precipitation less than 0.01 inches)Consecutive Dry Days Jan Jul Aug: Summer maximum number of consecutive dry days (days with total precipitation less than 0.01 inches in June, July, and August)Consecutive Wet Days: Annual maximum number of consecutive wet days (days with total precipitation greater than or equal to 0.01 inches)First Freeze Day: Date of the first fall freeze (annual first occurrence of a minimum temperature at or below 32degF in the fall)Growing Degree Days: Growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F) [degree days (degF)]Growing Degree Days Modified: Modified growing degree days, base 50 (annual cumulative number of degrees by which the daily average temperature is greater than 50°F; before calculating the daily average temperatures, daily maximum temperatures above 86°F and daily minimum temperatures below 50°F are set to those values) [degree days (degF)]growing-season: Length of the growing (frost-free) season (the number of days between the last occurrence of a minimum temperature at or below 32degF in the spring and the first occurrence of a minimum temperature at or below 32degF in the fall)Growing Season 28F: Length of the growing season, 28°F threshold (the number of days between the last occurrence of a minimum temperature at or below 28°F in the spring and the first occurrence of a minimum temperature at or below 28°F in the fall)Growing Season 41F: Length of the growing season, 41°F threshold (the number of days between the last occurrence of a minimum temperature at or below 41°F in the spring and the first occurrence of a minimum temperature at or below 41°F in the fall)Heating Degree Days: Heating degree days (annual cumulative number of degrees by which the daily average temperature is less than 65°F) [degree days (degF)]Last Freeze Day: Date of the last spring freeze (annual last occurrence of a minimum temperature at or below 32degF in the spring)Precip Above 99th pctl: Annual total precipitation for all days exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip Annual Total: Annual total precipitation [inches]Precip Days Above 99th pctl: Annual number of days with precipitation exceeding the 99th percentile, calculated with reference to 1976-2005 [inches]Precip 1in: Annual number of days with total precipitation greater than 1 inchPrecip 2in: Annual number of days with total precipitation greater than 2 inchesPrecip 3in: Annual number of days with total precipitation greater than 3 inchesPrecip 4in: Annual number of days with total precipitation greater than 4 inchesPrecip Max 1 Day: Annual highest precipitation total for a single day [inches]Precip Max 5 Day: Annual highest precipitation total over a 5-day period [inches]Daily Avg Temperature: Daily average temperature [degF]Daily Max Temperature: Daily maximum temperature [degF]Temp Max Days Above 99th pctl: Annual number of days with maximum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Max Days Below 1st pctl: Annual number of days with maximum temperature lower than the 1st percentile, calculated with reference to 1976-2005Days Above 100F: Annual number of days with a maximum temperature greater than 100degFDays Above 105F: Annual number of days with a maximum temperature greater than 105degFDays Above 110F: Annual number of days with a maximum temperature greater than 110degFDays Above 115F: Annual number of days with a maximum temperature greater than 115degFTemp Max 1 Day: Annual single highest maximum temperature [degF]Days Above 32F: Annual number of icing days (days with a maximum temperature less than 32degF)Temp Max 5 Day: Annual highest maximum temperature averaged over a 5-day period [degF]Days Above 86F: Annual number of days with a maximum temperature greater than 86degFDays Above 90F: Annual number of days with a maximum temperature greater than 90degFDays Above 95F: Annual number of days with a maximum temperature greater than 95degFTemp Min: Daily minimum temperature [degF]Temp Min Days Above 75F: Annual number of days with a minimum temperature greater than 75degFTemp Min Days Above 80F: Annual number of days with a minimum temperature greater than 80degFTemp Min Days Above 85F: Annual number of days with a minimum temperature greater than 85degFTemp Min Days Above 90F: Annual number of days with a minimum temperature greater than 90degFTemp Min Days Above 99th pctl: Annual number of days with minimum temperature greater than the 99th percentile, calculated with reference to 1976-2005Temp Min Days Below 1st pctl: Annual number of days with minimum temperature lower than the 1st percentile, calculated with reference to 1976-2005Temp Min Days Below 28F: Annual number of days with a minimum temperature less than 28degFTemp Min Max 5 Day: Annual highest minimum temperature averaged over a 5-day period [degF]Temp Min 1 Day: Annual single lowest minimum temperature [degF]Temp Min 32F: Annual number of frost days (days with a minimum temperature less than 32degF)Temp Min 5 Day: Annual lowest minimum temperature averaged over a 5-day period [degF]For For freeze-related variables:The first fall freeze is defined as the date of the first occurrence of 32degF or lower in the nine months starting midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The last spring freeze is defined as the date of the last occurrence of 32degF or lower in the nine months prior to midnight August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 32degF or lower are excluded from the analysis.No freeze occurrence, value = 999The growing season is defined as the number of days between the last occurrence of 28degF/32degF/41degF or lower in the nine months prior to midnight August 1 and the first occurrence of 28degF/32degF/41degF or lower in the nine months starting August 1. Grid points with more than 10 of the 30 years not experiencing an occurrence of 28degF/32degF/41degF or lower are excluded from the analysis.No freeze occurrence, value = 999

  16. a

    Massachusetts Climate and Hydrologic Risk Project (Phase 1) – Stochastic...

    • hub.arcgis.com
    • resilientma-mapcenter-mass-eoeea.hub.arcgis.com
    • +1more
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MA Executive Office of Energy and Environmental Affairs (2023). Massachusetts Climate and Hydrologic Risk Project (Phase 1) – Stochastic Weather Generator Climate Projections XLSX [Dataset]. https://hub.arcgis.com/documents/23886968313842ba9d268f27699da300
    Explore at:
    Dataset updated
    Feb 1, 2023
    Dataset provided by
    Massachusetts Executive Office of Energy and Environmental Affairs
    Authors
    MA Executive Office of Energy and Environmental Affairs
    Area covered
    Description

    Led by the Massachusetts Executive Office of Energy and Environmental Affairs (EEA), in partnership with Cornell University, U.S. Geological Survey and Tufts University, the Massachusetts Climate and Hydrologic Risk Project (Phase 1) has developed new climate change projections for the Commonwealth. These new temperature and precipitation projections are downscaled for Massachusetts at the HUC8 watershed scale using Global Climate Models (GCMs) and a Stochastic Weather Generator (SWG) developed by Cornell University.

    Stochastic weather generators provide a computationally efficient and complementary alternative to direct use of GCMs for investigating water system performance under climate stress. These models are configured based on existing meteorological records (i.e., historical weather) and are then used to generate large ensembles of simulated daily weather records that are similar to but not bound by variability in past observations. Once fit to historical data, model parameters can be systematically altered to produce new traces of weather that exhibit a wide range of change in their distributional characteristics, including the intensity and frequency of average and extreme precipitation, heatwaves, and cold spells.

    The Phase 1 SWG was developed, calibrated, and validated across all HUC8 watersheds that intersect with the state of Massachusetts. A set of climate change scenarios for those watersheds were generated that only reflect mechanisms of thermodynamic climate change deemed to be most credible. These thermodynamic climate changes are based on the range of temperature projections produced by a set of downscaled GCMs for the region. The temperature and precipitation projections presented in this dashboard reflect a warming scenario linked to the Representation Concentration Pathway (RCP) 8.5, a comparatively high greenhouse gas emissions scenario.

    The statistics presented in this series of map layers are expressed as either a percent change or absolute change (see list of layers with units and definitions below). These changes are referenced to baseline values that are calculated based on the median value across the 50 model ensemble members associated with the 0°C temperature change scenario derived from observational data (1950-2013) from Livneh et al. (2015). The temperature projections derived from the downscaled GCMs for the region, which are used to drive the SGW, are averaged across 30 years and centered on a target decade (i.e., 2030, 2050, 2070). Projections for 2090 are averaged across 20 years.Definitions of climate projection metrics (with units of change):Total Precipitation (% change): The average total precipitation within a calendar year. Maximum Precipitation (% change): The maximum daily precipitation in the entire record. Precipitation Depth – 90th Percentile Storm (% change): The 90th percentile of non-zero precipitation. Precipitation Depth –99th Percentile Storm (% change): The 99th percentile of non-zero precipitation. Consecutive Wet Days (# days): The average number of days that exist within a run of 2 or more wet days. Consecutive Dry Days (# days): The average number of days that exist within a model run of 2 or more dry days. Days above 1 inch (# days): The number of days with precipitation greater than 1 inch. Days above 2 inches (# days): The number of days with precipitation greater than 2 inches.Days above 4 inches (# days): The number of days with precipitation greater than 4 inches.Maximum Temperature (°F): The maximum daily average temperature value in the entire recordAverage Temperature (°F): Daily average temperature.Days below 0 °F (# days): The number of days with temperature below 0 °F.Days below 32 °F (# days): The number of days with temperature below 32 °F.Maximum Duration of Coldwaves (# days): Longest duration of coldwaves in the record, where coldwaves are defined as ten or more consecutive days below 20 °F.Average Duration of Coldwaves (# days): Average duration of coldwaves in the record, where coldwaves are defined as ten or more consecutive days below 20 °F.Number of Coldwave Events (# events): Number of instances with ten or more consecutive days with temperature below 20 °F.Number of Coldstress Events (# events): Number of instances when a 3-day moving average of temperature is less than 32 °F. Days above 100 °F (# days): The number of days with temperature above 100 °F.Days above 95 °F (# days): The number of days with temperature above 95 °F.Days above 90 °F (# days): The number of days with temperature above 90 °F.Maximum Duration of Heatwaves (# days): Longest duration of heatwaves in the record, where heatwaves are defined as three or more consecutive days over 90 °F.Average Duration of Heatwaves (# days): Average duration of heatwaves in the record, where heatwaves are defined as three or more consecutive days over 90 °F.Number of Heatwave Events (# events): Number of instances with three or more consecutive days with temperature over 90 °F.Number of Heatstress Events (# events): Number of instances when a 3-day moving average of temperature is above 86 °F.Cooling Degree Days (# degree-day): Cooling degree days assume that when the outside temperature is below 65°F, we don't need cooling (air-conditioning) to be comfortable. Cooling degree-days are the difference between the daily temperature mean and 65°F. For example, if the temperature mean is 85°F, we subtract 65 from the mean and the result is 20 cooling degree-days for that day. (Definition adapted from National Weather Service).Heating Degree Days (# degree-day): Heating degree-days assume that when the outside temperature is above 65°F, we don't need heating to be comfortable. Heating degree days are the difference between the daily temperature mean and 65°F. For example, if the mean temperature mean is 25°F, we subtract the mean from 65 and the result is 40 heating degree-days for that day. (Definition adapted from National Weather Service).Growing Degree Days (# degree-day): A growing degree day (GDD) is an index used to express crop maturity. The index is computed by subtracting a base temperature of 50°F from the average of the maximum and minimum temperatures for the day. Minimum temperatures less than 50°F are set to 50, and maximum temperatures greater than 86°F are set to 86. These substitutions indicate that no appreciable growth is detected with temperatures lower than 50° or greater than 86°. (Adapted from National Weather Service).Please see additional information related to this project and dataset in the Climate Change Projection Dashboard on the Resilient MA Maps and Data Center webpage.

  17. w

    Monthly Normals of Temperature, Precipitation, and Heating and Cooling...

    • data.wu.ac.at
    pdf
    Updated Dec 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Monthly Normals of Temperature, Precipitation, and Heating and Cooling Degree Days 1951-1980 North Dakota [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/MmVmZjAyZTQtZWZjOC00NmQwLTljY2UtZjg1Y2Q2N2IxMzdh
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Dec 5, 2017
    Area covered
    b3a8937c99f6aba4e468deef01e3a3ae45e168ad
    Description

    The climatological normals presented in this publication are based on records for the 30-year period 1951-80, inclusive, Data are assembled by individual States. Data are presented in the order shown in the title. Units used in this publication are of for temperature and inches for precipitation. Heating and cooling degree day (base 65F) normals are derived from the monthly normal temperatures using the technique developed by Thom (1), (2). Degree day normals also have been computed to other bases and may be obtained at cost from the National Climatic Center, Asheville, NC 28801-2696. OIT Library ID #:oitGHC_3181-49

  18. U.S. Daily Climate Normals (1971-2000)

    • catalog.data.gov
    • ncei.noaa.gov
    • +2more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). U.S. Daily Climate Normals (1971-2000) [Dataset]. https://catalog.data.gov/dataset/u-s-daily-climate-normals-1971-20003
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Daily Climate Normals (DSI-9641D) are based on monthly maximum, minimum, and mean temperature and monthly total precipitation records for each year in the 30-year period 1971-2000, inclusive (as well as separately computed monthly degree day totals). The monthly values are available in data set DSI-9641C or publication online (Climatography of the United States, No. 81 Monthly Station Normals of Temperature, Precipitation, and Heating and Cooling Degree Days, 1971-2000). In order to be included in the normals, a station had to have at least 10 years of monthly temperature data or 10 years of monthly precipitation data for each month in the period 1971-2000. In addition, a station had to be active since January 1, 1999, or had to be included as a normals station in the 1961-1990 normals.

  19. v

    Climate Zones - DOE Building America Program

    • anrgeodata.vermont.gov
    • atlas.eia.gov
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Energy Information Administration (2020). Climate Zones - DOE Building America Program [Dataset]. https://anrgeodata.vermont.gov/datasets/0c432b67293048b6a4704232a26ca99f
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    U.S. Energy Information Administration
    Area covered
    Description

    This map layer depicts the climate zone designations used by the U.S. Department of Energy Building America Program by county boundaries (generalized version). It is intended as an aid in helping builders to identify the appropriate climate designation for the counties in which they are building. The guide can be used in conjunction with guidance in the Building America Solution Center and the Best Practices builders’ guides produced by the DOE Building America Program to help builders determine which climate-specific guidance they should use. This data for this layer is taken from Building America Best Practices Series, Volume 7.3 - Guide to Determining Climate Regions by County. The eight U.S. Building America climate regions described here are based on the climate designations used by the International Energy Conservation Code (IECC) and the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). The IECC climate zone map was developed by DOE researchers at Pacific Northwest National Laboratory with input from Building America team members, in particular Joseph Lstiburek of Building Science Corporation.a,b The IECC map was developed to provide a simplified, consistent approach to defining climate for implementation of various codes; it was based on widely accepted classifications of world climates that have been applied in a variety of different disciplines. The PNNL-developed map was adopted by the IECC and was first included in the IECC in the 2004 Supplement to the IECC. It first appeared in ASHRAE 90.1 in the 2004 edition. The IECC map divided the United States into eight temperatureoriented climate zones. These zones are further divided into three moisture regimes designated A, B, and C. Thus the IECC map allows for up to 24 potential climate designations. In 2003, with direction from the Building America teams, researchers at DOE’s National Renewable Energy Laboratory simplified the IECC map for purposes of the Building America Program, into eight climate zones. For reporting purposes, these are further combined into five climate categories: Hot-humid,hot-dry/mixed drymixed-humidmarinecold/very coldsubarctic.The Building America and IECC climate maps are shown in Figures 1 and 2. The climate regions are described below. Climate zone boundaries follow county boundary lines. A listing of counties comprising each climate zone is provided below, beginning on page 5. The climate region definitions are based on heating degree days, average temperatures, and precipitation as follows:Hot-HumidA hot-humid climate is defined as a region that receives more than 20 inches (50 cm) of annual precipitation and where one or both of the following occur:• A 67°F (19.5°C) or higher wet bulb temperature for 3,000 or more hours during the warmest six consecutive months of the year; or• A 73°F (23°C) or higher wet bulb temperature for 1,500 or more hours during the warmest six consecutive months of the year.The Building America hot-humid climate zone includes the portions of IECC zones 1, 2, and 3 that are in the moist category (A) below the “warm-humid” line shown on the IECC map. Mixed-HumidA mixed-humid climate is defined as a region that receives more than 20 inches (50 cm) of annual precipitation, has approximately 5,400 heating degree days (65°F basis) or fewer, and where the average monthly outdoor temperature drops below 45°F (7°C) during the winter months.The Building America mixed-humid climate zone includes the portions of IECC zones 4 and 3 in category A above the “warmhumid” line. Hot-DryA hot-dry climate is defined as a region that receives less than 20 inches (50 cm) of annual precipitation and where the monthly average outdoor temperature remains above 45°F (7°C) throughout the year.The Building America hot-dry climate zone corresponds to the portions of IECC zones 2 and 3 in the dry category.Mixed-Dry A mixed-dry climate is defined as a region that receives less than 20 inches (50 cm) of annual precipitation, has approximately 5,400 heating degree days (65°F basis) or less, and where the average monthly outdoor temperature drops below 45°F (7°C) during the winter months.The Building America mixed-dry climate zone corresponds to IECC climate zone 4 B (dry).Cold A cold climate is defined as a region with between 5,400 and 9,000 heating degree days (65°F basis).The Building America cold climate corresponds to the IECC climate zones 5 and 6.Very-Cold A very cold climate is defined as a region with between 9,000 and 12,600 heating degree days (65°F basis).The Building America very cold climate corresponds to IECC climate zone 7.SubarcticA subarctic climate is defined as a region with 12,600 heating degree days (65° basis) or more. The only subarctic regions in the United States are in found Alaska, which is not shown in Figure 1.The Building America subarctic climate zone corresponds to IECC climate zone 8.Marine A marine climate is defined as a region that meets all of the following criteria: • A coldest month mean temperature between 27°F (-3°C) and 65°F (18°C)• A warmest month mean of less than 72°F (22°C)• At least 4 months with mean temperatures higher than 50°F (10°C)• A dry season in summer. The month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation in the rest of the year. The cold season is October through March in the Northern Hemisphere and April through September in the Southern Hemisphere.The Building America marine climate corresponds to those portions of IECC climate zones 3 and 4 located in the “C” moisture category. Building America and IECC Climate ZonesThe table below shows the relationship between the Building America and IECC climate zones.

    Building America
    IECC
    
    
    Subarctic
    Zone 8
    
    
    Very Cold
    Zone 7
    
    
    Cold
    Zone 5 and 6
    
    
    Mixed-Humid
    4A and 3A counties above warm-humid line
    
    
    Mixed-Dry
    Zone 4B
    
    
    Hot-Humid
    2A and 3A counties below warm-humid line
    
    
    Hot-Dry
    Zone 3B
    
    
    Marine
    All counties with a “C” moisture regime
    
  20. d

    Climatological Data National Summary

    • datadiscoverystudio.org
    • ncei.noaa.gov
    • +2more
    pdf, xml
    Updated Mar 15, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Climatological Data National Summary [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/cc3afd235c8f4207a4947b68309cf75f/html
    Explore at:
    pdf, xml(1)Available download formats
    Dataset updated
    Mar 15, 2011
    Area covered
    Description

    The CDNS was published from 1950 - 1980. Monthly and annual editions contain summarized climatological information from the following publications: Local Climatological Data (LCD), Climatological Data (CD), Monthly Climatic Data for the World (MCDW), Storm Data (SD), Mariners Weather Log (MWL), Weatherwise, Weekly Weather and Crop Bulletin (WWCB), Monthly Weather Review (MWR). Data includes a national general summary of weather conditions, observed extremes of temp & precip by states, climatological data by station, heating degree/cooling degree days, flood data and losses, and storm summaries. Upper air data, sunshine and solar radiation data are also summarized. The annual issue each year also contains the year's short rainfall duration statistics, hurricane and typhoon data and storm tracks for various basins, tornado information and long term statistics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Number of heating degree-days in the U.S. 1950-2024 [Dataset]. https://www.statista.com/statistics/245632/number-of-heating-degree-days-in-the-united-states/
Organization logo

Number of heating degree-days in the U.S. 1950-2024

Explore at:
Dataset updated
May 16, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

There were around 3,688 heating degree-days in the United States in 2024. Degree-days are relative measurements of outdoor air temperature. Heating degree-days are deviations below the mean daily temperature of 65 degrees Fahrenheit (ca. 18 degree Celsius). Heating degree-days were more numerous in the mid 20th century.

Search
Clear search
Close search
Google apps
Main menu