56 datasets found
  1. T

    Heating oil - Price Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). Heating oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/heating-oil
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Oct 23, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1980 - Jul 11, 2025
    Area covered
    World
    Description

    Heating Oil rose to 2.47 USD/Gal on July 11, 2025, up 3.46% from the previous day. Over the past month, Heating Oil's price has risen 11.10%, but it is still 1.60% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Heating oil - values, historical data, forecasts and news - updated on July of 2025.

  2. F

    No. 2 Heating Oil Prices: New York Harbor

    • fred.stlouisfed.org
    json
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). No. 2 Heating Oil Prices: New York Harbor [Dataset]. https://fred.stlouisfed.org/series/WHOILNYH
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 18, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    New York, New York Harbor
    Description

    Graph and download economic data for No. 2 Heating Oil Prices: New York Harbor (WHOILNYH) from 1986-06-06 to 2025-06-13 about new york harbor, heating, New York, oil, commodities, and USA.

  3. Is the Heating Oil Index a Reliable Indicator of Market Trends? (Forecast)

    • kappasignal.com
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Is the Heating Oil Index a Reliable Indicator of Market Trends? (Forecast) [Dataset]. https://www.kappasignal.com/2024/06/is-heating-oil-index-reliable-indicator.html
    Explore at:
    Dataset updated
    Jun 6, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is the Heating Oil Index a Reliable Indicator of Market Trends?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. T

    Crude Oil - Price Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Crude Oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/crude-oil
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 30, 1983 - Jul 11, 2025
    Area covered
    World
    Description

    Crude Oil rose to 68.75 USD/Bbl on July 11, 2025, up 3.27% from the previous day. Over the past month, Crude Oil's price has risen 1.04%, but it is still 16.37% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Crude Oil - values, historical data, forecasts and news - updated on July of 2025.

  5. Heating Oil TR/CC CRB Spot Market Signals Potential Price Volatility....

    • kappasignal.com
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Heating Oil TR/CC CRB Spot Market Signals Potential Price Volatility. (Forecast) [Dataset]. https://www.kappasignal.com/2025/04/heating-oil-trcc-crb-spot-market.html
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Heating Oil TR/CC CRB Spot Market Signals Potential Price Volatility.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. T

    Brent crude oil - Price Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Brent crude oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/brent-crude-oil
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 15, 1970 - Jul 11, 2025
    Area covered
    World
    Description

    Brent rose to 70.69 USD/Bbl on July 11, 2025, up 2.99% from the previous day. Over the past month, Brent's price has risen 1.92%, but it is still 16.86% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Brent crude oil - values, historical data, forecasts and news - updated on July of 2025.

  7. k

    DJ Commodity Heating Oil index Faces Uncertain Outlook (Forecast)

    • kappasignal.com
    Updated Apr 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). DJ Commodity Heating Oil index Faces Uncertain Outlook (Forecast) [Dataset]. https://www.kappasignal.com/2025/04/dj-commodity-heating-oil-index-faces.html
    Explore at:
    Dataset updated
    Apr 5, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DJ Commodity Heating Oil index Faces Uncertain Outlook

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. Heating Oil Index Forecast: Slight Uptick Predicted (Forecast)

    • kappasignal.com
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Heating Oil Index Forecast: Slight Uptick Predicted (Forecast) [Dataset]. https://www.kappasignal.com/2025/01/heating-oil-index-forecast-slight.html
    Explore at:
    Dataset updated
    Jan 8, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Heating Oil Index Forecast: Slight Uptick Predicted

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. DJ Commodity Heating Oil index: Analysts Predict Moderate Price Fluctuations...

    • kappasignal.com
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). DJ Commodity Heating Oil index: Analysts Predict Moderate Price Fluctuations (Forecast) [Dataset]. https://www.kappasignal.com/2025/04/dj-commodity-heating-oil-index-analysts.html
    Explore at:
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DJ Commodity Heating Oil index: Analysts Predict Moderate Price Fluctuations

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. T

    Natural gas - Price Data

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Natural gas - Price Data [Dataset]. https://tradingeconomics.com/commodity/natural-gas
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 3, 1990 - Jul 11, 2025
    Area covered
    World
    Description

    Natural gas rose to 3.36 USD/MMBtu on July 11, 2025, up 0.58% from the previous day. Over the past month, Natural gas's price has fallen 3.89%, but it is still 44.10% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Natural gas - values, historical data, forecasts and news - updated on July of 2025.

  11. Heating Oil TR/CC CRB Index Anticipates Seasonal Price Volatility (Forecast)...

    • kappasignal.com
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Heating Oil TR/CC CRB Index Anticipates Seasonal Price Volatility (Forecast) [Dataset]. https://www.kappasignal.com/2025/04/heating-oil-trcc-crb-index-anticipates.html
    Explore at:
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Heating Oil TR/CC CRB Index Anticipates Seasonal Price Volatility

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. Heating Oil TR/CC CRB Forecast Predicts Volatile Trading for Coming Months...

    • kappasignal.com
    Updated Apr 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Heating Oil TR/CC CRB Forecast Predicts Volatile Trading for Coming Months (Forecast) [Dataset]. https://www.kappasignal.com/2025/04/heating-oil-trcc-crb-forecast-predicts.html
    Explore at:
    Dataset updated
    Apr 13, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Heating Oil TR/CC CRB Forecast Predicts Volatile Trading for Coming Months

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. f

    Datasets for the Role of Financial Investors in Commodity Futures Risk...

    • figshare.com
    application/x-rar
    Updated Dec 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Isleimeyyeh (2019). Datasets for the Role of Financial Investors in Commodity Futures Risk Premium [Dataset]. http://doi.org/10.6084/m9.figshare.9334793.v2
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Dec 6, 2019
    Dataset provided by
    figshare
    Authors
    Mohammad Isleimeyyeh
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The datasets for the Role of Financial Investors on Commodity Futures Risk Premium are weekly datasets for the period from 1995 to 2015 for three commodities in the energy market: crude oil (WTI), heating oil, and natural gas. These datasets contain futures prices for different maturities, open interest positions for each commodity (long and short open interest positions), and S&P 500 composite index. The selected commodities are traded on the New York Mercantile Exchange (NYMEX). The data comes from the Thomson Reuters Datastream and from the Commodity Futures Trading Commission (CFTC).

  14. T

    Gasoline - Price Data

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gasoline - Price Data [Dataset]. https://tradingeconomics.com/commodity/gasoline
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 3, 2005 - Jul 11, 2025
    Area covered
    World
    Description

    Gasoline rose to 2.19 USD/Gal on July 11, 2025, up 1.65% from the previous day. Over the past month, Gasoline's price has risen 1.03%, but it is still 12.72% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gasoline - values, historical data, forecasts and news - updated on July of 2025.

  15. Leading U.S. oil and gas producers based on market cap June 2025

    • statista.com
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading U.S. oil and gas producers based on market cap June 2025 [Dataset]. https://www.statista.com/statistics/241625/top-10-us-oil-and-gas-companies-based-on-market-value/
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    ExxonMobil ranks first among the United States' top ten oil and gas producing companies based on market capitalization. As of June 18, 2025, the Texas-based oil supermajor had a market cap of ****** billion U.S. dollars. ExxonMobil can not only trace its roots back to the early years of commercial oil production, it has also become one of the largest oil and gas companies in the world. It is active in all areas of the supply chain, from hydrocarbon extraction to retailing of gasoline. What is market cap? As opposed to sales or assets, market capitalization is a metric used to determine a company’s size by the worth of their outstanding shares on the stock market. ExxonMobil often ranks as the leading oil and gas company based on market cap worldwide. However, its net income is often significantly lower than that of state-owned entities such as Saudi Aramco. The differing ratios exemplify how market cap is not a hard figure like net profits, but inflates and fluctuates according to the perceived value of a company, influenced by less quantifiable factors. The role of oil and gas in the world economy The oil and gas industry is involved in exploration, extraction, refining, transport, and marketing of hydrocarbons. Many industries are extremely dependent on oil and gas products, mostly in the form of fuels or raw materials for chemical products. The oil and gas industry is one of the largest worldwide, and it would follow that companies involved within the industry are among the top companies worldwide by revenue.

  16. Will the Dow Jones U.S. Oil & Gas Index Fuel Further Gains? (Forecast)

    • kappasignal.com
    Updated Nov 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the Dow Jones U.S. Oil & Gas Index Fuel Further Gains? (Forecast) [Dataset]. https://www.kappasignal.com/2024/11/will-dow-jones-us-oil-gas-index-fuel_13.html
    Explore at:
    Dataset updated
    Nov 13, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the Dow Jones U.S. Oil & Gas Index Fuel Further Gains?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. k

    INT World Fuel Services Corporation Common Stock (Forecast)

    • kappasignal.com
    Updated May 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). INT World Fuel Services Corporation Common Stock (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/int-world-fuel-services-corporation.html
    Explore at:
    Dataset updated
    May 1, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    INT World Fuel Services Corporation Common Stock

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. Fueling Growth: Is National Fuel Gas (NFG) Set for an Energy-Powered Rally?...

    • kappasignal.com
    Updated Jan 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Fueling Growth: Is National Fuel Gas (NFG) Set for an Energy-Powered Rally? (Forecast) [Dataset]. https://www.kappasignal.com/2024/01/fueling-growth-is-national-fuel-gas-nfg.html
    Explore at:
    Dataset updated
    Jan 14, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Fueling Growth: Is National Fuel Gas (NFG) Set for an Energy-Powered Rally?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. T

    Ethanol - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). Ethanol - Price Data [Dataset]. https://tradingeconomics.com/commodity/ethanol
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Oct 23, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 11, 2005 - Jul 11, 2025
    Area covered
    World
    Description

    Ethanol fell to 1.74 USD/Gal on July 11, 2025, down 0.29% from the previous day. Over the past month, Ethanol's price has risen 4.83%, but it is still 9.64% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Ethanol - values, historical data, forecasts and news - updated on July of 2025.

  20. k

    Westport's Fuel Systems Sees Promising Growth Ahead for (WPRT) Amidst...

    • kappasignal.com
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Westport's Fuel Systems Sees Promising Growth Ahead for (WPRT) Amidst Industry Shifts (Forecast) [Dataset]. https://www.kappasignal.com/2025/05/westports-fuel-systems-sees-promising.html
    Explore at:
    Dataset updated
    May 9, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Westport's Fuel Systems Sees Promising Growth Ahead for (WPRT) Amidst Industry Shifts

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2016). Heating oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/heating-oil

Heating oil - Price Data

Heating oil - Historical Dataset (1980-01-02/2025-07-11)

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
excel, csv, xml, jsonAvailable download formats
Dataset updated
Oct 23, 2016
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 2, 1980 - Jul 11, 2025
Area covered
World
Description

Heating Oil rose to 2.47 USD/Gal on July 11, 2025, up 3.46% from the previous day. Over the past month, Heating Oil's price has risen 11.10%, but it is still 1.60% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Heating oil - values, historical data, forecasts and news - updated on July of 2025.

Search
Clear search
Close search
Google apps
Main menu