This layer shows median household income by race and by age of householder. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 8, 2022National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2021 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Household Income in the United States (MEHOINUSA646N) from 1984 to 2023 about households, median, income, and USA.
Includes median household income in the past twelve months (in 2022 inflation-adjusted dollars). Geography-specific median household income are calculated as the population-weighted averages of the median household incomes within their respective 2020 census tracts. Median household income is defined as the amount that divides the household income distribution of a population into two equal groups; half of the population has a household income above that amount, whereas the other half has a household income below that amount. Household income is an important driver of life expectancy and other health outcomes, as individuals with higher household incomes, on average, experience better health and live longer than individuals with lower household incomes. This is largely due to increased access to opportunities, resources, and healthier living conditions that higher income individuals experience compared to lower income individuals.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
In the U.S., median household income rose from 51,570 U.S. dollars in 1967 to 80,610 dollars in 2023. In terms of broad ethnic groups, Black Americans have consistently had the lowest median income in the given years, while Asian Americans have the highest; median income in Asian American households has typically been around double that of Black Americans.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
In the 3 years to March 2021, black households were most likely out of all ethnic groups to have a weekly income of under £600.
https://www.icpsr.umich.edu/web/ICPSR/studies/9836/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9836/terms
The purpose of this project was to measure and estimate the distribution of income in both rural and urban areas of the People's Republic of China. The principal investigators based their definition of income on cash payments and on a broad range of additional components: payments in kind valued at market prices, agricultural output produced for self-consumption valued at market prices, the value of ration coupons and other direct subsidies, and the imputed value of housing. The rural component of this collection consists of two data files, one in which the individual is the unit of analysis and a second in which the household is the unit of analysis. Individual rural respondents reported on their employment status, level of education, Communist Party membership, type of employer (e.g., public, private, or foreign), type of economic sector in which employed, occupation, whether they held a second job, retirement status, monthly pension, monthly wage, and other sources of income. Demographic variables include relationship to householder, gender, age, and student status. Rural households reported extensively on the character of the household and residence. Information was elicited on type of terrain surrounding the house, geographic position, type of house, and availability of electricity. Also reported were sources of household income (e.g., farming, industry, government, rents, and interest), taxes paid, value of farm, total amount and type of cultivated land, financial assets and debts, quantity and value of various crops (e.g., grains, cotton, flax, sugar, tobacco, fruits and vegetables, tea, seeds, nuts, lumber, livestock and poultry, eggs, fish and shrimp, wool, honey, and silkworm cocoons), amount of grain purchased or provided by a collective, use of chemical fertilizers, gasoline, and oil, quantity and value of agricultural machinery, and all household expenditures (e.g., food, fuel, medicine, education, transportation, and electricity). The urban component of this collection also consists of two data files, one in which the individual is the unit of analysis and a second in which the household is the unit of analysis. Individual urban respondents reported on their economic status within the household, Communist Party membership, sex, age, nature of employment, and relationship to the household head. Information was collected on all types and sources of income from each member of the household whether working, nonworking, or retired, all revenue received by owners of private or individual enterprises, and all in-kind payments (e.g., food and durable and non-durable goods). Urban households reported total income (including salaries, interest on savings and bonds, dividends, rent, leases, alimony, gifts, and boarding fees), all types and values of food rations received, and total debt. Information was also gathered on household accommodations and living conditions, including number of rooms, total living area in square meters, availability and cost of running water, sanitary facilities, heating and air-conditioning equipment, kitchen availability, location of residence, ownership of home, and availability of electricity and telephone. Households reported on all of their expenditures including amounts spent on food items such as wheat, rice, edible oils, pork, beef and mutton, poultry, fish and seafood, sugar, and vegetables by means of both coupons in state-owned stores and at free market prices. Information was also collected on rents paid by the households, fuel available, type of transportation used, and availability and use of medical and child care. The Chinese Household Income Project collected data in 1988, 1995, 2002, and 2007. ICPSR holds data from the first three collections, and information about these can be found on the series description page. Data collected in 2007 are available through the China Institute for Income Distribution.
In 2023, the disposable income of a household led by a Millennial in the United States was 97,866 U.S. dollars per year. Households led by someone born in Generation X, however, had a disposable income of around 113,886 U.S. dollars in 2023.
This statistic shows the change in the median household income per decade in the United States from 1970 to 2014, by income tier. Between 1990 and 2000, the median household income for the middle class increased by 12 percent.
This study defined middle class income households as those with an income between 67 and 200 percent of the U.S. median household income, after adjustment for household size. In 2014, the middle class income ranged from about 42,000 U.S. dollars to about 126,000 U.S. dollars per year for a three-person household.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Ohio, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for Ohio increased by $3,145 (4.73%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 8 years and declined for 5 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ohio median household income. You can refer the same here
This layer shows household income ranges for households, families, married couple families, and nonfamily households (as defined by the U.S. Census). Data is from US Census American Community Survey (ACS) 5-year estimates. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.Layer includes:Total households (of various types including households, families, married couple families, and nonfamily households as defined by the U.S. Census)Household income bracketsHousehold median income in dollarsHousehold mean income in dollarsA ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Current Vintage: 2018-2022ACS Table(s): S1901 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community SurveyData Preparation: Data table downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 15, 2023National Figures: data.census.gov
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)
The Household Income, Expenditure and Consumption Survey (HIECS) is of great importance among other household surveys conducted by statistical agencies in various countries around the world. This survey provides a large amount of data to rely on in measuring the living standards of households and individuals, as well as establishing databases that serve in measuring poverty, designing social assistance programs, and providing necessary weights to compile consumer price indices, considered to be an important indicator to assess inflation.
The HIECS 2008/2009 is the tenth Household Income, Expenditure and Consumption Survey that was carried out in 2008/2009, among a long series of similar surveys that started back in 1955.
The survey main objectives are: - To identify expenditure levels and patterns of population as well as socio- economic and demographic differentials. - To estimate the quantities, values of commodities and services consumed by households during the survey period to determine the levels of consumption and estimate the current demand which is important to predict future demands. - To measure mean household and per-capita expenditure for various expenditure items along with socio-economic correlates. - To define percentage distribution of expenditure for various items used in compiling consumer price indices which is considered important indicator for measuring inflation. - To define mean household and per-capita income from different sources. - To provide data necessary to measure standard of living for households and individuals. Poverty analysis and setting up a basis for social welfare assistance are highly dependant on the results of this survey. - To provide essential data to measure elasticity which reflects the percentage change in expenditure for various commodity and service groups against the percentage change in total expenditure for the purpose of predicting the levels of expenditure and consumption for different commodity and service items in urban and rural areas. - To provide data essential for comparing change in expenditure against change in income to measure income elasticity of expenditure. - To study the relationships between demographic, geographical, housing characteristics of households and their income and expenditure for commodities and services. - To provide data necessary for national accounts especially in compiling inputs and outputs tables. - To identify consumers behavior changes among socio-economic groups in urban and rural areas. - To identify per capita food consumption and its main components of calories, proteins and fats according to its sources and the levels of expenditure in both urban and rural areas. - To identify the value of expenditure for food according to sources, either from household production or not, in addition to household expenditure for non food commodities and services. - To identify distribution of households according to the possession of some appliances and equipments such as (cars, satellites, mobiles ...) in urban and rural areas. - To identify the percentage distribution of income recipients according to some background variables such as housing conditions, size of household and characteristics of head of household.
Compared to previous surveys, the current survey experienced certain peculiarities, among which: 1- Doubling the number of area segments from 1200 in the previous survey to 2526 segments with decreasing the number of households selected from each segment to be (20) households instead of (40) in the previous survey to ensure appropriate representatives in the society. 2- Changing the survey period to 15 days instead of one month in the previous one 200412005, to lighten the respondent burden and encourage more cooperation. 3- Adding some additional questions: a- Participation or the benefits gained from pension and social security system. b- Participation in health insurance system. 4- Increasing quality control Procedures especially for fieldwork to ensure data accuracy and avoid any errors in suitable time.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing household surveys in several Arab countries.
Covering a sample of urban and rural areas in all the governorates.
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 50% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)
The sample of HIECS, 2008-2009 is a two-stage stratified cluster sample, approximately self-weighted, of nearly 48000 households. The main elements of the sampling design are described in the following.
1- Sample Size
It has been deemed important to retain the same sample size of the previous two HIECS rounds. Thus, a sample of about 48000 households has been considered. The justification of maintaining the sample size at this level is to have estimates with levels of precision similar to those of the previous two rounds: therefore trend analysis with the previous two surveys will not be distorted by substantial changes in sampling errors from round to another. In addition, this relatively large national sample implies proportional samples of reasonable sizes for smaller governorates. Nonetheless, over-sampling has been introduced to raise the sample size of small governorates to about 1000 households As a result, reasonably precise estimates could be extracted for those governorates. The over-sampling has resulted in a slight increase in the national sample to 48658 households.
2- Cluster size
An important lesson learned from the previous two HIECS rounds is that the cluster size applied in both surveys is found to be too large to yield an accepted design effect estimates. The cluster size was 40 households in the 2004-2005 round, descending from 80 households in the 1999-2000 round. The estimates of the design effect (deft) for most survey measures of the latest round were extraordinary large. As a result, it has been decided to decrease the cluster size to only 19 households (20 households in urban governorates to account for anticipated non-response in those governorates: in view of past experience non-response is almost nil in rural governorates).
A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among the documentation materials published in both Arabic and English.
Face-to-face [f2f]
Three different questionnaires have been designed as following: 1- Expenditure and consumption questionnaire. 2- Diary questionnaire for expenditure and consumption. 3- Income questionnaire.
In designing the questionnaires of expenditure, consumption and income, we were taking into our consideration the following: - Using the recent concepts and definitions of International Labor Organization approved in the International Convention of Labor Statisticians held in Geneva, 2003. - Using the recent Classification of Individual Consumption according to Purpose (COICOP). - Using more than one approach of expenditure measurement to serve many purposes of the survey.
A brief description of each questionnaire is given next:
This questionnaire comprises 14 tables in addition to identification and geographic data of household on the cover page. The questionnaire is divided into two main sections.
Section one: Household schedule and other information. It includes: - Demographic characteristics and basic data for all household individuals consisting of 18 questions for every person. - Members of household who are currently working abroad. - The household ration card. - The main outlets that provide food and beverage. - Domestic and foreign tourism. - The housing conditions including 15 questions. - Means of transportation used to go to work or school. - The household possession of appliances and means of transportation. - This section includes some questions which help to define the social and economic level of households which in turn, help interviewers to check the plausibility of expenditure, consumption and income data.
Section two: Expenditure and consumption data It includes 14 tables as follows: - The quantity and value of food and beverages commodities actually consumed. - The quantity and value of the actual consumption of alcoholic beverages, tobacco and narcotics. - The quantity and value of the clothing and footwear. - The household expenditure for housing. - The household expenditure for furnishings, household equipment and routine maintenance of the house. - The household expenditure for health care services. - The household expenditure for transportation. - The household
This dataset represents the geospatial extent as polygons and the corresponding attribution for census block groups that meet the definition of low-income communities according to the Virginia 2020 Environmental Justice Act: “Low-income community” definition: “’Low-income community’ means any census block group in which 30 percent or more of the population is composed of people with low income.”
The referenced “low income” definition is also provided below: “Low income” definition: “’Low income’ means having an annual household income equal to or less than the greater of (i) an amount equal to 80 percent of the median income of the area in which the household is located, as reported by the Department of Housing and Urban Development, and (ii) 200 percent of the Federal Poverty Level.”
Mean and median average gross annual household income for Output Areas, Lower SOAs, Middle SOAs, Wards and Boroughs, London, 2011/12
This income data is unequivalised - that is it takes no account of average household size or composition within each area.
A full description of how the estimates were put together can be read in this GLA Intelligence Unit Update.
Download:
Or **Open: **
- Atlas (or click on image below)
These are experimental income estimates, which means that they are in the testing phase. Feedback is welcome with the intention that the model will be improved in future years if possible. Please send any comments to the Datastore email address.
This GLA Intellingence Update paper presents analysis of the headline findings of these data.
https://s3-eu-west-1.amazonaws.com/londondatastore-upload/Update6-income%20analysis%20screen.PNG" alt="">
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows household income ranges and cutoffs. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households that make under $75,000 annually. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B19001 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
At the end of 2024, the median household income was 76,667 Uruguayan pesos, which means that 50 percent of households have an income less than or equal to this figure. Compared to the previous quarter, there was a decrease of 437 pesos.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Elk Point. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Elk Point. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Elk Point, the median household income stands at $103,750 for householders within the 45 to 64 years age group, followed by $95,640 for the 25 to 44 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $40,208.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Elk Point median household income by age. You can refer the same here
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Median Family Income in the United States (MEFAINUSA672N) from 1953 to 2023 about family, median, income, real, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Mean Family Income in the United States (MAFAINUSA646N) from 1953 to 2023 about family, average, income, and USA.
This layer shows median household income by race and by age of householder. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.