28 datasets found
  1. a

    Data from: Ward Boundaries

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jul 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of High Point, North Carolina, USA (2017). Ward Boundaries [Dataset]. https://hub.arcgis.com/datasets/7ada32f3ed80487fa70f811a2882598c
    Explore at:
    Dataset updated
    Jul 31, 2017
    Dataset authored and provided by
    City of High Point, North Carolina, USA
    Area covered
    Description

    Based on the 2010 US Census data, the High Point City Council determined a need for ward boundary changes. Boundary adjustments were made to accommodate population changes and shifts, so that each ward would encompass equal populations. The new ward boundaries were pre-cleared by the US Department of Justice in accordance with the Federal Voting Rights Act before the election filing period (July 2012).

  2. r

    High Water Marks

    • geohub.roundrocktexas.gov
    • geohub-corr.hub.arcgis.com
    Updated Jul 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Round Rock (2019). High Water Marks [Dataset]. https://geohub.roundrocktexas.gov/datasets/high-water-marks/api
    Explore at:
    Dataset updated
    Jul 30, 2019
    Dataset authored and provided by
    City of Round Rock
    Area covered
    Description

    This layer contains the data for High Water Marks in the City of Round Rock, located in Williamson County, Texas. This layer is part of an original dataset provided and maintained by the City of Round Rock GIS/IT Department. The data in this layer are represented as points.A high water mark is defined as the level at which water will reach at its highest point, such as a sea at high tide. The purpose of a high water mark is to show how high the water level in a particular body of water, such as a river, is able to rise given certain conditions. The City of Round Rock contains 25 high water marks, as represented in this layer.

  3. m

    Porches

    • gis.data.mass.gov
    Updated Apr 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cambridge (2020). Porches [Dataset]. https://gis.data.mass.gov/items/ca5787a29fc6499785c825283c49ba18
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset authored and provided by
    City of Cambridge
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Description

    City of Cambridge, MA, GIS basemap development project encompasses the land area of City of Cambridge with a 200-foot fringe surrounding the area and Charles River shoreline towards Boston. The basemap data was developed at 1" = 40' mapping scale using digital photogrammetric techniques. Planimetric features; both man-made and natural features like vegetation, rivers have been depicted. These features are important to all GIS/mapping applications and publication. A set of data layers such as Buildings, Roads, Rivers, Utility structures, 1 ft interval contours are developed and represented in the geodatabase. The features are labeled and coded in order to represent specific feature class for thematic representation and topology between the features is maintained for an accurate representation at the 1:40 mapping scale for both publication and analysis. The basemap data has been developed using procedures designed to produce data to the National Standard for Spatial Data Accuracy (NSSDA) and is intended for use at 1" = 40 ' mapping scale. Where applicable, the vertical datum is NAVD1988.Explore all our data on the Cambridge GIS Data Dictionary.Attributes NameType DetailsDescription TOP_GL type: Doublewidth: 8precision: 38 Elevation of highest point above ground level (NAVD88)

    TOP_SL type: Doublewidth: 8precision: 38 Elevation of highest point above sea level (NAVD88)

    BASE_ELEV type: Doublewidth: 8precision: 38 Base elevation of structure (NAVD88)

    ELEV_GL type: Doublewidth: 8precision: 38 Elevation of porch above ground level (NAVD88)

    ELEV_SL type: Doublewidth: 8precision: 38 Elevation of porch above sea level (NAVD88)

  4. d

    California State Waters Map Series--Offshore of Point Conception Web...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Point Conception Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-point-conception-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Conception, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.

  5. a

    Surficial Geology of the High Prairie Area (NTS 83N/SE (GIS data, point...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +2more
    Updated Dec 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Surficial Geology of the High Prairie Area (NTS 83N/SE (GIS data, point features) [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/resources/datasets/5094eb42-eded-4b11-b302-793b71aaee9b
    Explore at:
    Dataset updated
    Dec 17, 2024
    Description

    This GIS dataset depicts the surficial geology of the NTS map area 83N southeast (point features). The data are created in ArcInfo format and output for public distribution in Arc export (E00) and shapefile formats.

  6. d

    High-resolution lidar data for infrastructure corridors, Beechey Point...

    • datadiscoverystudio.org
    • s.cnmilf.com
    • +2more
    Updated Apr 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/08adfc1b9953478793ef1eeb47ceb250/html
    Explore at:
    Dataset updated
    Apr 9, 2015
    Area covered
    Beechey Point
    Description

    description: In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans.Lidar intensity images depict intensity values of the lidar-laser returns.; abstract: In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans.Lidar intensity images depict intensity values of the lidar-laser returns.

  7. m

    Decks

    • gis.data.mass.gov
    • hub.arcgis.com
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cambridge (2020). Decks [Dataset]. https://gis.data.mass.gov/datasets/CambridgeGIS::decks
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset authored and provided by
    City of Cambridge
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Description

    City of Cambridge, MA, GIS basemap development project encompasses the land area of City of Cambridge with a 200-foot fringe surrounding the area and Charles River shoreline towards Boston. The basemap data was developed at 1" = 40' mapping scale using digital photogrammetric techniques. Planimetric features; both man-made and natural features like vegetation, rivers have been depicted. These features are important to all GIS/mapping applications and publication. A set of data layers such as Buildings, Roads, Rivers, Utility structures, 1 ft interval contours are developed and represented in the geodatabase. The features are labeled and coded in order to represent specific feature class for thematic representation and topology between the features is maintained for an accurate representation at the 1:40 mapping scale for both publication and analysis. The basemap data has been developed using procedures designed to produce data to the National Standard for Spatial Data Accuracy (NSSDA) and is intended for use at 1" = 40 ' mapping scale. Where applicable, the vertical datum is NAVD1988.Explore all our data on the Cambridge GIS Data Dictionary.Attributes NameType DetailsDescription TOP_GL type: Doublewidth: 8precision: 38 Elevation of highest point above ground level (NAVD88)

    TOP_SL type: Doublewidth: 8precision: 38 Elevation of highest point of deck above sea level (NAVD88)

    BASE_ELEV type: Doublewidth: 8precision: 38 Base elevation of deck (NAVD88)

    ELEV_GL type: Doublewidth: 8precision: 38 Elevation of deck above ground level (NAVD88)

    ELEV_SL type: Doublewidth: 8precision: 38 Elevation of deck above sea level (NAVD88)

  8. MDOT SHA High Mast Lighting (HML) (Open Data)

    • data.imap.maryland.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2023). MDOT SHA High Mast Lighting (HML) (Open Data) [Dataset]. https://data.imap.maryland.gov/maps/maryland::mdot-sha-high-mast-lighting-hml-open-data
    Explore at:
    Dataset updated
    Mar 21, 2023
    Dataset provided by
    https://arcgis.com/
    Authors
    ArcGIS Online for Maryland
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Esri ArcGIS Online (AGOL) Hosted, View Feature Layer for accessing the MDOT SHA High Mast Lighting (HML) data product.MDOT SHA High Mast Lighting (HML) consists of point geometric features which represent the geographic locations of active high mast lighting structures along MDOT SHA maintained roadways throughout the State of Maryland. Inactive HML structures are not included as they have either been disassembled or no longer exist.MDOT SHA High Mast Lighting (HML) data is owned & maintained by the MDOT SHA Office of Traffic & Safety (OOTS). For more information, contact MDOT SHA OIT Enterprise Information Services:Email: GIS@mdot.maryland.gov

  9. d

    High-resolution lidar data for infrastructure corridors, Beechey Point...

    • catalog.data.gov
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Division of Geological & Geophysical Surveys (Point of Contact) (2023). High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska [Dataset]. https://catalog.data.gov/dataset/high-resolution-lidar-data-for-infrastructure-corridors-beechey-point-quadrangle-alaska19
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset provided by
    Alaska Division of Geological & Geophysical Surveys (Point of Contact)
    Area covered
    Alaska, Beechey Point
    Description

    In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. Lake polygons represent areas of water bodies (excluding streams and rivers) > 150 square meteres, present at the time of lidar data collection.

  10. u

    Surficial Geology of the High Prairie Area (NTS 83N/SE (GIS data, point...

    • data.urbandatacentre.ca
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Surficial Geology of the High Prairie Area (NTS 83N/SE (GIS data, point features) - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-5094eb42-eded-4b11-b302-793b71aaee9b
    Explore at:
    Dataset updated
    Oct 1, 2024
    Area covered
    High Prairie, Canada
    Description

    This GIS dataset depicts the surficial geology of the NTS map area 83N southeast (point features). The data are created in ArcInfo format and output for public distribution in Arc export (E00) and shapefile formats.

  11. a

    GRSM HIGH PEAKS

    • mapdirect-fdep.opendata.arcgis.com
    • grsm-nps.opendata.arcgis.com
    • +3more
    Updated Jan 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). GRSM HIGH PEAKS [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/nps::grsm-high-peaks-1
    Explore at:
    Dataset updated
    Jan 11, 2025
    Dataset authored and provided by
    National Park Service
    Area covered
    Description

    Great Smoky Mountains National Park High Peaks showing height of Mountains and Knobs measured with Lidar or Survey-grade GPS.These data are authoritative data published by the National Park Service. Search for additional authoritative park GIS and Map data within this system by performing a keyword search of "Great Smoky Mountains National Park".

  12. g

    High-resolution lidar data for infrastructure corridors, Beechey Point...

    • gimi9.com
    Updated Jan 1, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_high-resolution-lidar-data-for-infrastructure-corridors-beechey-point-quadrangle-alaska21
    Explore at:
    Dataset updated
    Jan 1, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Alaska, Beechey Point
    Description

    In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. The highest-hit digital surface models (DSM) represent the earth's surface with all vegetation and human-made structures included.

  13. d

    High-resolution lidar data for infrastructure corridors, Beechey Point...

    • catalog.data.gov
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Division of Geological & Geophysical Surveys (Point of Contact) (2023). High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska [Dataset]. https://catalog.data.gov/dataset/high-resolution-lidar-data-for-infrastructure-corridors-beechey-point-quadrangle-alaska14
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset provided by
    Alaska Division of Geological & Geophysical Surveys (Point of Contact)
    Area covered
    Alaska, Beechey Point
    Description

    In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. Hillshade (shaded relief) images, produced from bare-earth DEMs provide a visual representation of topographic relief.

  14. H

    LiDAR and Wetlands: Acquisition Guidelines for these Challenging Landforms

    • beta.hydroshare.org
    • hydroshare.org
    • +1more
    zip
    Updated May 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sandra Fox; Keith Patterson; Nick Kules; Al Kalrin (2018). LiDAR and Wetlands: Acquisition Guidelines for these Challenging Landforms [Dataset]. https://beta.hydroshare.org/resource/f539b4b445014b31910ac6ce865c18ca/
    Explore at:
    zip(5.4 MB)Available download formats
    Dataset updated
    May 1, 2018
    Dataset provided by
    HydroShare
    Authors
    Sandra Fox; Keith Patterson; Nick Kules; Al Kalrin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    AWRA GIS & Water Resources X: Spatial Analysis of Watersheds: Ecological, Hydrological and Societal Responses April 22 – 25, 2018 Abstract Title: LiDAR and Wetlands: Acquisition Guidelines for these Challenging Landforms Presenter: Sandra Fox, SJRWMD Co-authors: Keith Paterson, Dewberry; Nick Kules, Dewberry; Kimberli Ponzio, SJRWMD; Steven J. Miller, SJRWMD; Richard Guilfoyle, SJRWMD; Bill Van Sickle, SJRWMD; James Walters, SJRWMD; Sherry Brandt-Williams, SJRWMD, Al Karlin, SWFWMD

    Abstract included in Topical Session Topical Session Title: New and Emerging LiDAR Technologies: High Density and TopoBathymetric LiDAR Sensors (organized by Dr. Al Karlin, SWFWMD)

    Abstract: As part of a topical session devoted to new and emerging Light Detection and Ranging (LiDAR) technologies, this presentation focuses on the challenges present when wetlands are a major component of the landscape, particularly in Florida. Examples: A “standard” driver for determining acquisition timing has been “leaf off” conditions, which may not be relevant in our sunny clime especially in wetlands. A far more relevant driver is hydrology. Wetlands are not always “wet”; simple models based on historical stage records are being used in the Upper St Johns River Basin (USJRB) to “fly when it’s dry” – a better driver for LiDAR acquisition. The problem of dense vegetation obscuring true ground has been successfully addressed with high point densities and 55% flight overlap, among other sensor specifications. Lastly, successful results involving reprocessing and recalibrating older (2012) LiDAR data, also in USJRB wetlands (at a significant cost savings compared to re-flying the project area) will be presented.

    Presentation at 2018 AWRA Spring Specialty Conference: Geographic Information Systems (GIS) and Water Resources X, Orlando, Florida, April 23-25, http://awra.org/meetings/Orlando2018/

  15. d

    Shoreline Mapping Program of BARBERS POINT HARBOR, HI, HI0601A

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NGS Communications and Outreach Branch (Point of Contact, Custodian) (2024). Shoreline Mapping Program of BARBERS POINT HARBOR, HI, HI0601A [Dataset]. https://catalog.data.gov/dataset/shoreline-mapping-program-of-barbers-point-harbor-hi-hi0601a1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    NGS Communications and Outreach Branch (Point of Contact, Custodian)
    Area covered
    Barbers Point Harbor
    Description

    These data provide an accurate high-resolution shoreline compiled from imagery of BARBERS POINT HARBOR, HI . This vector shoreline data is based on an office interpretation of imagery that may be suitable as a geographic information system (GIS) data layer. This metadata describes information for both the line and point shapefiles. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808

  16. g

    High-resolution lidar data for infrastructure corridors, Beechey Point...

    • gimi9.com
    Updated Jan 1, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_high-resolution-lidar-data-for-infrastructure-corridors-beechey-point-quadrangle-alaska13
    Explore at:
    Dataset updated
    Jan 1, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Alaska, Beechey Point
    Description

    In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. Bare-earth digital elevation models (DEM) represent the earth's surface with all vegetation and human-made structures removed.

  17. d

    Data from: California State Waters Map Series--Offshore of Tomales Point Web...

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Tomales Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-tomales-point-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Tomales Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Tomales Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  18. d

    HATTERAS_SHORELINES_1978_2002: Hatteras Island shorelines from 1978 to 2002:...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). HATTERAS_SHORELINES_1978_2002: Hatteras Island shorelines from 1978 to 2002: fourteen high water shorelines from Oregon Inlet to Cape Hatteras Point, North Carolina (geographic, WGS84). [Dataset]. https://catalog.data.gov/dataset/hatteras-shorelines-1978-2002-hatteras-island-shorelines-from-1978-to-2002-fourteen-high-w
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Hatteras Island, Cape Hatteras, Oregon Inlet, Hatteras, North Carolina
    Description

    The shoreline of Cape Hatteras, North Carolina, is experiencing long-term coastal erosion. In order to better understand and monitor the changing coastline, historical aerial imagery is used to map shoreline change. For the area of Hatteras Island from Cape Point to Oregon Inlet, fourteen aerial datasets from 1978-2002 were scanned and georeferenced for use in a Geographic Information System (GIS). Shoreline positions (high water line) were digitized from georeferenced imagery. The shoreline vectors were then compiled for use in the Digital Shoreline Analysis System (DSAS) ArcGIS extension in order to generate rates of shoreline change.

  19. d

    High-resolution lidar data for infrastructure corridors, Beechey Point...

    • catalog.data.gov
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Division of Geological & Geophysical Surveys (Point of Contact) (2023). High-resolution lidar data for infrastructure corridors, Beechey Point Quadrangle, Alaska [Dataset]. https://catalog.data.gov/dataset/high-resolution-lidar-data-for-infrastructure-corridors-beechey-point-quadrangle-alaska18
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset provided by
    Alaska Division of Geological & Geophysical Surveys (Point of Contact)
    Area covered
    Alaska, Beechey Point
    Description

    In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications and construction plans. The dataset represents all classified laser returns from the lidar survey and their associated geospatial coordinates.

  20. d

    California State Waters Map Series--Point Sur to Point Arguello Web Services...

    • catalog.data.gov
    • gimi9.com
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Point Sur to Point Arguello Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-point-sur-to-point-arguello-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Point Arguello, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of High Point, North Carolina, USA (2017). Ward Boundaries [Dataset]. https://hub.arcgis.com/datasets/7ada32f3ed80487fa70f811a2882598c

Data from: Ward Boundaries

Related Article
Explore at:
Dataset updated
Jul 31, 2017
Dataset authored and provided by
City of High Point, North Carolina, USA
Area covered
Description

Based on the 2010 US Census data, the High Point City Council determined a need for ward boundary changes. Boundary adjustments were made to accommodate population changes and shifts, so that each ward would encompass equal populations. The new ward boundaries were pre-cleared by the US Department of Justice in accordance with the Federal Voting Rights Act before the election filing period (July 2012).

Search
Clear search
Close search
Google apps
Main menu