100+ datasets found
  1. Cities with the highest population density globally 2025

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest population density globally 2025 [Dataset]. https://www.statista.com/statistics/1237290/cities-highest-population-density/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    Mogadishu in Somalia led the ranking of cities with the highest population density in 2025, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.

  2. Cities with the highest population density in Latin America 2023

    • statista.com
    Updated Aug 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Cities with the highest population density in Latin America 2023 [Dataset]. https://www.statista.com/statistics/1473796/cities-highest-population-density-latam/
    Explore at:
    Dataset updated
    Aug 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Latin America, Americas
    Description

    As of 2023, the top five most densely populated cities in Latin America and the Caribbean were in Colombia. The capital, Bogotá, ranked first with over ****** inhabitants per square kilometer.

  3. Italian cities with the highest population density 2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Italian cities with the highest population density 2025 [Dataset]. https://www.statista.com/statistics/1128344/italian-cities-with-the-highest-population-density/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Italy
    Description

    Naples is the Italian city with the highest population density. As of 2025, the largest south Italian city counts 7,780 inhabitants per square kilometer. Milan followed with around 7,500 residents per square kilometer, whereas Rome, the largest Italian city, registered a population density of only 2,135 people, 5,645 inhabitants per square kilometer less than Naples.

  4. Cities with the highest population density in Mexico 2023

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest population density in Mexico 2023 [Dataset]. https://www.statista.com/statistics/1473797/cities-highest-population-density-mexico/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Mexico
    Description

    Mexico City ranked as the most densely populated city in Mexico as of 2023. The capital recorded ***** inhabitants per square kilometer. Xalapa and Acapulco followed with ***** and ***** inhabitants per square kilometer, respectively.

  5. Covid-19 Highest City Population Density

    • kaggle.com
    zip
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity
    Explore at:
    zip(4685 bytes)Available download formats
    Dataset updated
    Mar 25, 2020
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  6. Highest population density by country 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  7. a

    Population Density (1 kilometer)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Population Density (1 kilometer) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/a0f3ad34d5ac48d1aa6a2c7fcfcefbbc
    Explore at:
    Dataset updated
    Jun 20, 2023
    Dataset authored and provided by
    MapMaker
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    In the last century, the global population has increased by billions of people. And it is still growing. Job opportunities in large cities have caused an influx of people to these already packed locations. This has resulted in an increase in population density for these cities, which are now forced to expand in order to accommodate the growing population. Population density is the average number of people per unit, usually miles or kilometers, of land area. Understanding and mapping population density is important. Experts can use this information to inform decisions around resource allocation, natural disaster relief, and new infrastructure projects. Infectious disease scientists use these maps to understand the spread of infectious disease, a topic that has become critical after the COVID-19 global pandemic.While a useful tool for decision and policymakers, it is important to understand the limitations of population density. Population density is most effective in small scale places—cities or neighborhoods—where people are evenly distributed. Whereas at a larger scale, such as the state, region, or province level, population density could vary widely as it includes a mix of urban, suburban, and rural places. All of these areas have a vastly different population density, but they are averaged together. This means urban areas could appear to have fewer people than they really do, while rural areas would seem to have more. Use this map to explore the estimated global population density (people per square kilometer) in 2020. Where do people tend to live? Why might they choose those places? Do you live in a place with a high population density or a low one?

  8. a

    Boston Population Density

    • boston-harbor-resources-bsumaps.hub.arcgis.com
    Updated Apr 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ball State University ArcGIS Online (2021). Boston Population Density [Dataset]. https://boston-harbor-resources-bsumaps.hub.arcgis.com/maps/c41b6b075d5d4a87a1788bc21f30d38a
    Explore at:
    Dataset updated
    Apr 29, 2021
    Dataset authored and provided by
    Ball State University ArcGIS Online
    Area covered
    Description

    The population density picture of Boston is generally a story of two Bostons: the high density central and northern neighborhoods, and the low density southern neighborhoods.The highest density areas of Boston are particularly concentrated in Brighton, Allston, and the Fenway area, areas of the city with large numbers of college students and young adults. There is also high population density in areas such as the Back Bay, the South End, Charlestown, the North End, and South Boston. These are all relatively small areas geographically, but have housing stock conducive to population density (e.g. multi-family dwelling units, row housing, large apartment buildings). The southern neighborhoods, specifically Hyde Park and West Roxbury, have significant numbers of people living in them, but lots sizes tend to be much larger. These areas of the city also tend to have more single family dwelling units. In that, there are fewer people per square mile than places north in the city. Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, areas of highest density exceed 30,000 persons per square kilometer. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.How to make this map for your city

  9. V

    Vietnam Population Density: SE: Ho Chi Minh city

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Vietnam Population Density: SE: Ho Chi Minh city [Dataset]. https://www.ceicdata.com/en/vietnam/population-density-by-provinces/population-density-se-ho-chi-minh-city
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Vietnam
    Variables measured
    Population
    Description

    Vietnam Population Density: SE: Ho Chi Minh city data was reported at 4,513.100 Person/sq km in 2023. This records an increase from the previous number of 4,481.000 Person/sq km for 2022. Vietnam Population Density: SE: Ho Chi Minh city data is updated yearly, averaging 4,196.400 Person/sq km from Dec 2011 (Median) to 2023, with 13 observations. The data reached an all-time high of 4,513.100 Person/sq km in 2023 and a record low of 3,633.100 Person/sq km in 2011. Vietnam Population Density: SE: Ho Chi Minh city data remains active status in CEIC and is reported by General Statistics Office. The data is categorized under Global Database’s Vietnam – Table VN.G003: Population Density: By Provinces.

  10. c

    Urban Growth and Decline: The Role of Population Density at the City Core

    • clevelandfed.org
    Updated Dec 21, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2011). Urban Growth and Decline: The Role of Population Density at the City Core [Dataset]. https://www.clevelandfed.org/publications/economic-commentary/2011/ec-201127-urban-growth-and-decline-the-role-of-population-density-at-the-city-core
    Explore at:
    Dataset updated
    Dec 21, 2011
    Dataset authored and provided by
    Federal Reserve Bank of Cleveland
    Description

    In recent decades, some cities have seen their urban centers lose population density, as residents spread farther out to suburbs and exurbs. Others have kept populous downtowns even as their environs have grown. Population density in general has economic advantages, so one might wonder whether a loss of density, which may be a symptom of negative economic shocks, could amplify those shocks. We look at four decades of census data and show that growing cities have maintained dense urban centers, while shrinking cities have not. There are reasons to think that loss of population density at the core of the city could be particularly damaging to productivity. If this is the case, there could be productivity gains from policies aimed at reversing that trend.

  11. Population density in the U.S. 2023, by state

    • akomarchitects.com
    • statista.com
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veera Korhonen (2025). Population density in the U.S. 2023, by state [Dataset]. https://www.akomarchitects.com/?p=2437241
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Veera Korhonen
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  12. i

    Illinois Cities by Population

    • illinois-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Illinois Cities by Population [Dataset]. https://www.illinois-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.illinois-demographics.com/terms_and_conditionshttps://www.illinois-demographics.com/terms_and_conditions

    Area covered
    Illinois
    Description

    A dataset listing Illinois cities by population for 2024.

  13. T

    Vital Signs: Population – by city (2022)

    • data.bayareametro.gov
    Updated Dec 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Population – by city (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Population-by-city-2022-/gnyn-e3uh
    Explore at:
    kmz, xml, csv, kml, application/geo+json, xlsxAvailable download formats
    Dataset updated
    Dec 19, 2022
    Description

    VITAL SIGNS INDICATOR Population (LU1)

    FULL MEASURE NAME
    Population estimates

    LAST UPDATED
    February 2023

    DESCRIPTION
    Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.

    DATA SOURCE
    California Department of Finance: Population and Housing Estimates - http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
    Table E-6: County Population Estimates (1960-1970)
    Table E-4: Population Estimates for Counties and State (1970-2021)
    Table E-8: Historical Population and Housing Estimates (1990-2010)
    Table E-5: Population and Housing Estimates (2010-2021)

    Bay Area Jurisdiction Centroids (2020) - https://data.bayareametro.gov/Boundaries/Bay-Area-Jurisdiction-Centroids-2020-/56ar-t6bs
    Computed using 2020 US Census TIGER boundaries

    U.S. Census Bureau: Decennial Census Population Estimates - http://www.s4.brown.edu/us2010/index.htm- via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University
    1970-2020

    U.S. Census Bureau: American Community Survey (5-year rolling average; tract) - https://data.census.gov/
    2011-2021
    Form B01003

    Priority Development Areas (Plan Bay Area 2050) - https://opendata.mtc.ca.gov/datasets/MTC::priority-development-areas-plan-bay-area-2050/about

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    All historical data reported for Census geographies (metropolitan areas, county, city and tract) use current legal boundaries and names. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of December 2022.

    Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.

    Population estimates for Bay Area tracts and PDAs are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Population estimates for PDAs are allocated from tract-level Census population counts using an area ratio. For example, if a quarter of a Census tract lies with in a PDA, a quarter of its population will be allocated to that PDA. Estimates of population density for PDAs use gross acres as the denominator. Note that the population densities between PDAs reported in previous iterations of Vital Signs are mostly not comparable due to minor differences and an updated set of PDAs (previous iterations reported Plan Bay Area 2040 PDAs, whereas current iterations report Plan Bay Area 2050 PDAs).

    The following is a list of cities and towns by geographical area:

    Big Three: San Jose, San Francisco, Oakland

    Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside

    Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville

    Unincorporated: all unincorporated towns

  14. a

    Minnesota Population Density By County-Copy

    • umn.hub.arcgis.com
    Updated Dec 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Minnesota (2020). Minnesota Population Density By County-Copy [Dataset]. https://umn.hub.arcgis.com/maps/64d3f12b5e7642faa02099142da40aad
    Explore at:
    Dataset updated
    Dec 11, 2020
    Dataset authored and provided by
    University of Minnesota
    Area covered
    Description

    Minnesota on the Map: Minnesota Population Density By CountyThis is a population density map of Minnesota by county with the 5 largest cities in Minnesota labeled.The darker of a color a county has, the denser it's population. The black lines separate the counties. I downloaded the county outlines and county population data, and I made the population density scale and colors. It was hard to figure out a good scale level, but I eventually decided on 1 person per square mile to 510 people per square mile. Though there are counties with higher population density than 510 people per square mile, there are also counties with much lower population densities that are close enough in value to the point where their representative colors would be too close together to effectively show their population density data if a scale with a larger range was used. I used a simple, grey basemap to give context as to where Minnesota is and because maps with more information aren't necessary and draw attention away from population density.It was hard to figure out what map to make, but I figured that a population density map would be useful for people who are interested in moving to a certain county or people who are interested in advertising and want to spend their money wisely.This map helps potential residents, businesses, and anyone curious learn more about the population of Minnesota. This is vital information about Minnesota which will help many people.

  15. f

    Florida Cities by Population

    • florida-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Florida Cities by Population [Dataset]. https://www.florida-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions

    Area covered
    Florida City, Florida
    Description

    A dataset listing Florida cities by population for 2024.

  16. d

    2015 Cartographic Boundary File, Urban Area-State-County for Vermont,...

    • catalog.data.gov
    Updated Jan 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2015 Cartographic Boundary File, Urban Area-State-County for Vermont, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2015-cartographic-boundary-file-urban-area-state-county-for-vermont-1-500000
    Explore at:
    Dataset updated
    Jan 13, 2021
    Area covered
    Vermont
    Description

    The 2015 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.

  17. f

    Data_Sheet_1_Mediating Sustainability and Liveability—Turning Points of...

    • frontiersin.figshare.com
    docx
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manuel Wolff; Dagmar Haase (2023). Data_Sheet_1_Mediating Sustainability and Liveability—Turning Points of Green Space Supply in European Cities.docx [Dataset]. http://doi.org/10.3389/fenvs.2019.00061.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Manuel Wolff; Dagmar Haase
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    Urban growth in and around European cities affects multiple aspects of the environment including green spaces. On the one hand, many cities struggle with environmental problems, overcrowding and overuse resulting from high population densities. On the other hand, high densities result in better access to public green spaces, effective public transport, or less demand for resources. Consequently, finding a balance between density and high liveability in a green and sustainable urban environment is a major challenge for urban planning. Although many studies report and discuss the provision of green spaces in European cities, they fail to relate green space provision to the potential demand by urban dwellers, and to the extent differences can be detected between types of green. Against this background, this paper develops a systematic understanding of green space supply and its relation to the residential density of cities. In so doing, it detects turning points of green space supply in 905 European cities. The results show that green space supply is sensitive to the type of green space, population size and location of cities. Particularly the relation between residential density and the supply with urban green spaces covering parks, public gardens or cemeteries, indicate turning points: at certain residential densities the urban green space supply is decreasing. At a certain residential density, the urban green space supply is highest and cities have a high potential to optimize the balance between sustainability and liveability. However, there is no single optimal residential density. Rather, turning points are different between cities of different density and location in Europe and between different types of neighborhoods within cities. Therefore, different optimum values need to be defined sensitive to these characteristics. For most of the European cities, a decrease of population or built-area cannot be expected in the future. In this situation, the approach to identifying the turning points for green space supply as presented in this paper can be used as a comparative method. This informs green space policies for defining acceptable densities of urban development and corresponding standards for the provision of urban green space.

  18. Population Density, 2001

    • data.wu.ac.at
    • datasets.ai
    • +1more
    pdf
    Updated Jan 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada | Ressources naturelles Canada (2017). Population Density, 2001 [Dataset]. https://data.wu.ac.at/schema/www_data_gc_ca/YTI4Y2JhMTUtYjMxYi01OTA4LWI2ZWMtYjc0NzAzYTcwMzcx
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 26, 2017
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    ebb9aaace3f01a907a0c7fce799751f936e4fd26
    Description

    Canada, with 3.33 people per square kilometre, has one of the lowest population densities in the world. In 2001, most of Canada's population of 30,007,094 lived within 200 kilometres of the United States (along Canada's south). In fact, the inhabitants of our three biggest cities -- Toronto, Montréal and Vancouver -- can drive to the border in less than two hours. Thousands of kilometres to the north, our polar region -- the Yukon, the Northwest Territories and Nunavut -- is relatively empty, embracing 41% of our land mass but only 0.3% of our population. An inset map shows in greater detail the Windsor-Québec Corridor where a high concentration of Canadians live.

  19. P

    Philippines Population Density: NCR: City of Valenzuela

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Philippines Population Density: NCR: City of Valenzuela [Dataset]. https://www.ceicdata.com/en/philippines/population-and-population-density-census/population-density-ncr-city-of-valenzuela
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1975 - Dec 1, 2015
    Area covered
    Philippines
    Variables measured
    Population
    Description

    Philippines Population Density: NCR: City of Valenzuela data was reported at 13,195.000 Person/sq km in 2015. This records an increase from the previous number of 12,236.000 Person/sq km for 2010. Philippines Population Density: NCR: City of Valenzuela data is updated yearly, averaging 9,810.500 Person/sq km from Dec 1975 (Median) to 2015, with 8 observations. The data reached an all-time high of 13,195.000 Person/sq km in 2015 and a record low of 3,204.362 Person/sq km in 1975. Philippines Population Density: NCR: City of Valenzuela data remains active status in CEIC and is reported by Philippine Statistics Authority. The data is categorized under Global Database’s Philippines – Table PH.G005: Population Density.

  20. f

    Heterogeneity test: Population density.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Tianyang; Jia, Xiaojun; Li, Jingcheng; Mao, Qi (2024). Heterogeneity test: Population density. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001471939
    Explore at:
    Dataset updated
    Feb 20, 2024
    Authors
    Wang, Tianyang; Jia, Xiaojun; Li, Jingcheng; Mao, Qi
    Description

    The escalating challenge of municipal solid waste (MSW) critically tests the sustainable development capacities of urban centers. In response, China initiated pilot policies in 2017 aimed at bolstering MSW management. The effectiveness of these initiatives, however, necessitates empirical scrutiny. This study leverages panel data spanning 95 cities at the prefectural level or higher, covering the period from 2006 to 2020, to assess the impact of the MSW sorting pilot policy on urban sustainable development using a difference-in-differences approach. The research found that the MSW sorting pilot policy has significantly increased the processing volume of MSW, thereby enhancing the sustainable development capabilities of cities. Further, the study identifies augmented fixed asset investments as a key mechanism through which pilot cities have enhanced their MSW management capabilities. Notably, the policy’s stimulative effects are more pronounced in less densely populated and economically lagging regions. These findings provide critical insights for developing nations in shaping MSW sorting strategies and advancing urban sustainability.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cities with the highest population density globally 2025 [Dataset]. https://www.statista.com/statistics/1237290/cities-highest-population-density/
Organization logo

Cities with the highest population density globally 2025

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 28, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
World
Description

Mogadishu in Somalia led the ranking of cities with the highest population density in 2025, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.

Search
Clear search
Close search
Google apps
Main menu