7 datasets found
  1. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  2. e

    World - High Resolution Solar Resource (GHI, DIF, GTI, DNI) GIS Data,...

    • energydata.info
    Updated Nov 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). World - High Resolution Solar Resource (GHI, DIF, GTI, DNI) GIS Data, (Global Solar Atlas) - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-high-resolution-solar-resource-ghi-dif-gti-dni-gis-data-global-solar-atlas
    Explore at:
    Dataset updated
    Nov 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains solar resource data for: direct normal irradiation (DNI), global horizontal irradiation (GHI), diffuse horizontal irradiation data (DIF), and global irradiation for optimally tilted surfaces (GTI), all in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m). Due to the large amount of data, the coverage has been divided into eight segments. Four segments for the North hemisphere: WWN (West-west-north), WN (West-north), EN (East-north), EEN (East-east-north). Analogically four segments for the South hemisphere: WWS, WS, ES, EES. The data is hyperlinked under 'resources' with the following characteristics: DNI LTAy_AvgDailyTotals (GeoTIFF) Data format: raster (gridded), GEOTIFF File size : 343.99 MB For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

  3. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained...

    • figshare.com
    zip
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hylke E. Beck; Tim McVicar; Noemi Vergopolan; Alexis Berg; Nicholas Lutsko; Ambroise Dufour; Zhenzhong Zeng; Xin Jiang; Albert van Dijk; Diego Miralles (2024). High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections [Dataset]. http://doi.org/10.6084/m9.figshare.21789074.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Hylke E. Beck; Tim McVicar; Noemi Vergopolan; Alexis Berg; Nicholas Lutsko; Ambroise Dufour; Zhenzhong Zeng; Xin Jiang; Albert van Dijk; Diego Miralles
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    High-resolution maps of the Köppen-Geiger climate classification for historical and future climate conditions (Beck et al., 2023).IMPORTANT: Most users only need the "koppen_geiger_tif.zip" archive (90 MB). It includes GeoTIFFs of Köppen-Geiger maps in varying resolutions for multiple periods and future socio-economic scenarios.For example, the file "2071_2099\ssp585\koppen_geiger_0p01.tif" in the archive provides the Köppen-Geiger map for the period 2071–2099 under the SSP5-8.5 scenario with a resolution of 0.01° (roughly 1 km). GeoTIFF files are easily viewed using Geographic Information System (GIS) software such as QGIS.The "koppen_geiger_tif.zip" archive also contains a legend file, "legend.txt", which links the numeric values in the maps to the Köppen-Geiger climate symbols and provides the color scheme used for displaying the maps.The other archives contain underlying climate data in different resolutions. For details on these archives, please refer to the 'Data Records' section in Beck et al. (2023).Please cite Beck et al. (2023) when using the maps in any publication:Beck, H. E., T. R. McVicar, N. Vergopolan, A. Berg, N. J. Lutsko, A. Dufour, Z. Zeng, X. Jiang, A. I. J. M. van Dijk, and D. G. Miralles. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Scientific Data 10, 724 (2023).

  4. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  5. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  6. e

    Indonesia - Population density - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Apr 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Indonesia - Population density - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/indonesia--population-density-2015
    Explore at:
    Dataset updated
    Apr 3, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Indonesia data available from WorldPop here.

  7. Z

    Dataset for: Bedding scale correlation on Mars in western Arabia Terra

    • data.niaid.nih.gov
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Koeppel, Ari H. D. (2024). Dataset for: Bedding scale correlation on Mars in western Arabia Terra [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7636996
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Koeppel, Ari H. D.
    Lewis, Kevin W.
    Edwards, Christopher S.
    Annex, Andrew M.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset for: Bedding scale correlation on Mars in western Arabia Terra

    A.M. Annex et al.

    Data Product Overview

    This repository contains all source data for the publication. Below is a description of each general data product type, software that can load the data, and a list of the file names along with the short description of the data product.

    HiRISE Digital Elevation Models (DEMs).

    HiRISE DEMs produced using the Ames Stereo Pipeline are in geotiff format ending with ‘*X_0_DEM-adj.tif’, the “X” prefix denotes the spatial resolution of the data product in meters. Geotiff files are able to be read by free GIS software like QGIS.

    HiRISE map-projected imagery (DRGs).

    Map-projected HiRISE images produced using the Ames Stereo Pipeline are in geotiff format ending with ‘*0_Y_DRG-cog.tif’, the “Y” prefix denotes the spatial resolution of the data product in centimeters. Geotiff files are able to be read by free GIS software like QGIS. The DRG files are formatted as COG-geotiffs for enhanced compression and ease of use.

    3D Topography files (.ply).

    Traingular Mesh versions of the HiRISE/CTX topography data used for 3D figures in “.ply” format. Meshes are greatly geometrically simplified from source files. Topography files can be loaded in a variety of open source tools like ParaView and Meshlab. Textures can be applied using embedded texture coordinates.

    3D Geological Model outputs (.vtk)

    VTK 3D file format files of model output over the spatial domain of each study site. VTK files can be loaded by ParaView open source software. The “block” files contain the model evaluation over a regular grid over the model extent. The “surfaces” files contain just the bedding surfaces as interpolated from the “block” files using the marching cubes algorithm.

    Geological Model geologic maps (geologic_map.tif).

    Geologic maps from geological models are standard geotiffs readable by conventional GIS software. The maximum value for each geologic map is the “no-data” value for the map. Geologic maps are calculated at a lower resolution than the topography data for storage efficiency.

    Beds Geopackage File (.gpkg).

    Geopackage vector data file containing all mapped layers and associated metadata including dip corrected bed thickness as well as WKB encoded 3D linestrings representing the sampled topography data to which the bedding orientations were fit. Geopackage files can be read using GIS software like QGIS and ArcGIS as well as the OGR/GDAL suite. A full description of each column in the file is provided below.

        Column
        Type
        Description
    
    
    
    
        uuid
        String
        unique identifier
    
    
        stratum_order
        Real
        0-indexed bed order
    
    
        section
        Real
        section number
    
    
        layer_id
        Real
        bed number/index
    
    
        layer_id_bk
        Real
        unused backup bed number/index
    
    
        source_raster
        String
        dem file path used
    
    
        raster
        String
        dem file name
    
    
        gsd
        Real
        ground sampling distant for dem
    
    
        wkn
        String
        well known name for dem
    
    
        rtype
        String
        raster type
    
    
        minx
        Real
        minimum x position of trace in dem crs
    
    
        miny
        Real
        minimum y position of trace in dem crs
    
    
        maxx
        Real
        maximum x position of trace in dem crs
    
    
        maxy
        Real
        maximum y position of trace in dem crs
    
    
        method
        String
        internal interpolation method
    
    
        sl
        Real
        slope in degrees
    
    
        az
        Real
        azimuth in degrees
    
    
        error
        Real
        maximum error ellipse angle
    
    
        stdr
        Real
        standard deviation of the residuals
    
    
        semr
        Real
        standard error of the residuals
    
    
        X
        Real
        mean x position in CRS
    
    
        Y
        Real
        mean y position in CRS
    
    
        Z
        Real
        mean z position in CRS
    
    
        b1
        Real
        plane coefficient 1
    
    
        b2
        Real
        plane coefficient 2
    
    
        b3
        Real
        plane coefficient 3
    
    
        b1_se
        Real
        standard error plane coefficient 1
    
    
        b2_se
        Real
        standard error plane coefficient 2
    
    
        b3_se
        Real
        standard error plane coefficient 3
    
    
        b1_ci_low
        Real
        plane coefficient 1 95% confidence interval low
    
    
        b1_ci_high
        Real
        plane coefficient 1 95% confidence interval high
    
    
        b2_ci_low
        Real
        plane coefficient 2 95% confidence interval low
    
    
        b2_ci_high
        Real
        plane coefficient 2 95% confidence interval high
    
    
        b3_ci_low
        Real
        plane coefficient 3 95% confidence interval low
    
    
        b3_ci_high
        Real
        plane coefficient 3 95% confidence interval high
    
    
        pca_ev_1
        Real
        pca explained variance ratio pc 1
    
    
        pca_ev_2
        Real
        pca explained variance ratio pc 2
    
    
        pca_ev_3
        Real
        pca explained variance ratio pc 3
    
    
        condition_number
        Real
        condition number for regression
    
    
        n
        Integer64
        number of data points used in regression
    
    
        rls
        Integer(Boolean)
        unused flag
    
    
        demeaned_regressions
        Integer(Boolean)
        centering indicator
    
    
        meansl
        Real
        mean section slope
    
    
        meanaz
        Real
        mean section azimuth
    
    
        angular_error
        Real
        angular error for section
    
    
        mB_1
        Real
        mean plane coefficient 1 for section
    
    
        mB_2
        Real
        mean plane coefficient 2 for section
    
    
        mB_3
        Real
        mean plane coefficient 3 for section
    
    
        R
        Real
        mean plane normal orientation vector magnitude
    
    
        num_valid
        Integer64
        number of valid planes in section
    
    
        meanc
        Real
        mean stratigraphic position
    
    
        medianc
        Real
        median stratigraphic position
    
    
        stdc
        Real
        standard deviation of stratigraphic index
    
    
        stec
        Real
        standard error of stratigraphic index
    
    
        was_monotonic_increasing_layer_id
        Integer(Boolean)
        monotonic layer_id after projection to stratigraphic index
    
    
        was_monotonic_increasing_meanc
        Integer(Boolean)
        monotonic meanc after projection to stratigraphic index
    
    
        was_monotonic_increasing_z
        Integer(Boolean)
        monotonic z increasing after projection to stratigraphic index
    
    
        meanc_l3sigma_std
        Real
        lower 3-sigma meanc standard deviation
    
    
        meanc_u3sigma_std
        Real
        upper 3-sigma meanc standard deviation
    
    
        meanc_l2sigma_sem
        Real
        lower 3-sigma meanc standard error
    
    
        meanc_u2sigma_sem
        Real
        upper 3-sigma meanc standard error
    
    
        thickness
        Real
        difference in meanc
    
    
        thickness_fromz
        Real
        difference in Z value
    
    
        dip_cor
        Real
        dip correction
    
    
        dc_thick
        Real
        thickness after dip correction
    
    
        dc_thick_fromz
        Real
        z thickness after dip correction
    
    
        dc_thick_dev
        Integer(Boolean)
        dc_thick <= total mean dc_thick
    
    
        dc_thick_fromz_dev
        Integer(Boolean)
        dc_thick <= total mean dc_thick_fromz
    
    
        thickness_fromz_dev
        Integer(Boolean)
        dc_thick <= total mean thickness_fromz
    
    
        dc_thick_dev_bg
        Integer(Boolean)
        dc_thick <= section mean dc_thick
    
    
        dc_thick_fromz_dev_bg
        Integer(Boolean)
        dc_thick <= section mean dc_thick_fromz
    
    
        thickness_fromz_dev_bg
        Integer(Boolean)
        dc_thick <= section mean thickness_fromz
    
    
        slr
        Real
        slope in radians
    
    
        azr
        Real
        azimuth in radians
    
    
        meanslr
        Real
        mean slope in radians
    
    
        meanazr
        Real
        mean azimuth in radians
    
    
        angular_error_r
        Real
        angular error of section in radians
    
    
        pca_ev_1_ok
        Integer(Boolean)
        pca_ev_1 < 99.5%
    
    
        pca_ev_2_3_ratio
        Real
        pca_ev_2/pca_ev_3
    
    
        pca_ev_2_3_ratio_ok
        Integer(Boolean)
        pca_ev_2_3_ratio > 15
    
    
        xyz_wkb_hex
        String
        hex encoded wkb geometry for all points used in regression
    

    Geological Model input files (.gpkg).

    Four geopackage (.gpkg) files represent the input dataset for the geological models, one per study site as specified in the name of the file. The files contain most of the columns described above in the Beds geopackage file, with the following additional columns. The final seven columns (azimuth, dip, polarity, formation, X, Y, Z) constituting the actual parameters used by the geological model (GemPy).

        Column
        Type
        Description
    
    
    
    
        azimuth_mean
        String
        Mean section dip azimuth 
    
    
        azimuth_indi
        Real
        Individual bed azimuth
    
    
        azimuth
        Real
        Azimuth of trace used by the geological model
    
    
        dip
        Real
        Dip for the trace used by the geological mode
    
    
        polarity
        Real
        Polarity of the dip vector normal vector 
    
    
        formation
        String
        String representation of layer_id required for GemPy models
    
    
        X
        Real
        X position in the CRS of the sampled point on the trace
    
    
        Y
        Real
        Y position in the CRS of the sampled point on the trace
    
    
        Z
        Real
        Z position in the CRS of the sampled point on the trace
    

    Stratigraphic Column Files (.gpkg).

    Stratigraphic columns computed from the Geological Models come in three kinds of Geopackage vector files indicated by the postfixes _sc, rbsc, and rbssc. File names include the wkn site name.

    sc (_sc.gpkg).

    Geopackage vector data file containing measured bed thicknesses from Geological Model joined with corresponding Beds Geopackage file, subsetted partially. The columns largely overlap with the the list above for the Beds Geopackage but with the following additions

        Column
        Type
        Description
    
    
    
    
        X
        Real
        X position of thickness measurement
    
    
        Y
        Real
        Y position of thickness measurement
    
    
        Z
        Real
        Z position of thickness measurement
    
    
        formation
        String
        Model required string representation of bed index
    
    
        bed thickness (m)
        Real
        difference of bed elevations
    
    
        azimuths
        Real
        azimuth as measured from model in degrees
    
    
        dip_degrees
        Real
        dip as measured from model in
    
  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995

High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

Explore at:
53 scholarly articles cite this dataset (View in Google Scholar)
shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
Dataset updated
Jun 17, 2025
Dataset provided by
Natural Resources Canada
License

Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically

Description

The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

Search
Clear search
Close search
Google apps
Main menu