Facebook
TwitterHigh resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.
A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.
Facebook
TwitterSpring 2023
Facebook
TwitterAerial photographs were acquired for the Puerto Rico and U.S. Virgin Islands Benthic Mapping Project in 1999 by NOAA Aircraft Operation Centers aircraft and National Geodetic Survey cameras and personnel. Approximately 600, color, 9 by 9 inch photos were taken of the coastal waters of Puerto Rico and the U.S. Virgin Islands at 1:48000 scale. Specific sun angle and maximum percent cloud cover re...
Facebook
TwitterThe U.S. Geological Survey (USGS) Aerial Photography data set includes over 2.5 million film transparencies. Beginning in 1937, photographs were acquired for mapping purposes at different altitudes using various focal lengths and film types. The resultant black-and-white photographs contain less than 5 percent cloud cover and were acquired under rigid quality control and project specifications (e.g., stereo coverage, continuous area coverage of map or administrative units). Prior to the initiation of the National High Altitude Photography (NHAP) program in 1980, the USGS photography collection was one of the major sources of aerial photographs used for mapping the United States. Since 1980, the USGS has acquired photographs over project areas that require photographs at a larger scale than the photographs in the NHAP and National Aerial Photography Program collections.
Facebook
TwitterThis data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.
Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).
Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks.
The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data. Contact NSIDC User Services at nsidc@nsidc.org to order the data, and include an NSF OPP award number in the email.
Facebook
TwitterWorld Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world. In the United States, 1 meter or better resolution NAIP imagery is available in some areas. In other parts of the world, imagery at different resolutions has been contributed by the GIS User Community. In select communities, very high resolution imagery (down to 0.03m) is available down to ~1:280 scale. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. View the list of Contributors for the World Imagery Map.CoverageView the links below to learn more about recent updates and map coverage:What's new in World ImageryWorld coverage mapCitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. A similar raster web map, Imagery with Labels, is also available.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
Facebook
TwitterWorld Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Vantor imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Vantor products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Vantor Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Vantor HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map. UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Vertical aerial photography is an airborne mapping technique, which uses a high-resolution camera mounted vertically underneath the aircraft to capture reflected light in the red, green, blue and for some datasets, near infra-red spectrum. Images of the ground are captured at resolutions between 10cm and 50cm, and ortho-rectified using simultaneous LIDAR and GPS to a high spatial accuracy.
The Environment Agency has been capturing vertical aerial photography data regularly since 2006 on a project by project basis each ranging in coverage from a few square kilometers to hundreds of square kilometers. The data is available as a raster dataset in ECW (enhanced compressed wavelet) format as either a true colour (RGB), near infra-red (NIR) or a 4-band (RGBN) raster. Where imagery has been captured under incident response conditions and the lighting conditions may be sub-optimal this is defined by the prefix IR. The data are presented as tiles in British National Grid OSGB 1936 projections. Data is available in 5km download zip files for each year of survey. Within each zip file are ECW files aligned to the Ordinance Survey grid. The size of each tile is dependent upon the spatial resolution of the data.
Please refer to the metadata index catalgoues for the survey date captured, type of survey and spatial resolution of the imagery.
Facebook
TwitterAerial photographs were acquired for the Main Eight Hawaiian Islands Benthic Mapping Project in 2000 by NOAA Aircraft Operation Centers aircraft and National Geodetic Survey cameras and personnel. Approximately 1,500, color, 9 by 9 inch photos were taken of the coastal waters of the Main Eight Hawaiian Island at 1:24,000 scale. Specific sun angle and maximum percent cloud cover were adhered to...
Facebook
TwitterThe imagery posted on this site is of the Florida coast after Hurricane Wilma made landfall. The regions photographed range from Key West to Sixmile Bend, Florida. The aerial photograph missions were conducted by the NOAA Remote Sensing Division the day after Wilma made landfall, October 25 and concluded October 27. The images were acquired from an altitude of 7,500 feet, using an Emerge/Applan...
Facebook
TwitterHigh resolution photography captured from aeroplane and orthorectified to provide accurate geographic location
Facebook
TwitterThis data set includes aerial photography of Barrow, Alaska, which has been geocorrected to a 2002 QuickBird satellite image or Interferometric Synthetic Aperture Radar (IFSAR) imagery. Photography included in the set is from these specific dates, from 1948 to 1997: 4 August 1948, 29 July 1949, 12-14 August 1955, 12-24 August 1962, 14 July 1964, 15 July 1979, 31 August 1984, and 16 July 1997.
Data are in GeoTIFF and ESRI Shapefile formats with FGDC compliant metadata. Data on DVD are available for ordering. Note: The data for 14 July 1964 span both DVDs. Send an email to NSIDC User Services at nsidc@nsidc.org to order the data.
Facebook
TwitterThis aerial imagery dataset consists of high resolution (1 inch up to 1 meter) true color, infrared, 4-band, black and white, and hyperspectral ortho-rectified mosaic tiles collected in coastal areas to support shoreline and coastal mapping efforts. This data is created as a product from the NOAA Office for Coastal Management (OCM) from data collected by the NOAA National Geodetic Survey (NGS), the NOAA Office for Coastal Management (OCM) and the US Army Corps of Engineers (USACE). The source imagery was acquired from airplane flights from across the United States since 1944 and is an ongoing project. Ortho-rectified mosaic tiles are an ancillary product supporting the Interagency Working Group - Ocean and Coastal Mapping with a goal of increasing support for multiple uses of the data. Most of the data was collected through NOAA NGS's Coastal Mapping Program (CMP) and typically has a ground sample distance (GSD) for each pixel of 0.50 m, though more recent data may have a 0.35 m or 0.25 m GSD. Data collected by the US Army Corps of Engineers (USACE) is typically higher resolution with 0.05 m GSD. The rest of the data was acquired by OCM. OCM has an agreement with NGS and the USACE to archive the imagery that is delivered to OCM. The data set includes Geotiff (.tif) or ERDAS Imagine .img format images with associated GIS tile index shapefiles and a manifest file.
Facebook
TwitterCommissioned by the governments participating in the Beeldmateriaal partnership, an aerial photograph covering the entire country is produced annually during the summer months. As of the 2016 edition, this product will be made available as open data via PDOK. This aerial photograph has a resolution of 25 centimeters. The resolution indicates how large a pixel is on the earth's surface, in this case 25 by 25 centimeters.
As of the 2021 edition, in addition to the above-mentioned aerial photograph, the partnership will also make available the visual material that will be collected in the spring as open data. These are aerial photographs with a high resolution (HR) of 7.5 centimetres. Shortly after collection, a ‘quick’ variant is offered on a temporary basis; this footage does not yet meet all the requirements (e.g. with regard to geometry, radiometry and the connection to adjacent images), but is already usable as a viewing picture and for orientation. The final product is made available as soon as the entire production process has been completed and the quality control has been positively concluded. This product replaces the ‘quick’ variant.
The products available are the so-called orthophoto mosaics. These are composed of the central parts of the individual aerial photographs, thus minimising the overturning of tall objects in the mosaics. The orthophoto mosaics of the 25 centimeter aerial photo are offered both as a color photo (Red Green Blue) and in an InfraRed version; for the 7.5 centimetre aerial photograph, it is only available in a colour version (RGB).
Within the web services a number of layers are offered, namely:
• Aerial (year) Quick Ortho 8cm RGB (temporary version); • Aerial photograph (year) Ortho 8cm RGB (final version); • Aerial Photo News Ortho 8cm RGB
• Aerial (year) Quick Ortho 25cm RGB (temporary version); • Aerial (year) Ortho 25m RGB (final version); • Aerial Photo Current Ortho 25cm RGB;
The various layers are gradually being filled in the current year. The layers Actueel_ortho25 and Actueel_ortho25[IR] always refer to the dataset of the most recent country-covering year of the 25 centimetre aerial photograph.
The layer Actueel_orthoHR always refers to the dataset of the most recent year of the 7.5 centimeter aerial photograph. New layers are added every year. A maximum of 5 years are displayed.
PDOK offers the open data visual material in the form of web services. The partnership offers via opendata.beeldmateriaal.nl the possibility to obtain data in the form of physical deliveries (downloads).
Information about the progress of the production of the current year can be found on beeldmateriaal.nl.
Facebook
TwitterUAV Imagery Collection:
Data was collected using a Mavic 2 Pro drone with the integrated Hasselblad L1D-20C RGB camera at an altitude of 90 feet (27.4 m). Flights were conducted over a barley field located west of Bozeman Montana (45.676415, -111.149092). DJI GS Pro software was used on an iPad mini to create an automated flight path for imagery capture. Images were collected while hovering to minimize blurring and captured with 70% overlap along the flight path and 70% overlap between flight passes. Weather permitting, flights were timed as close to 10:00 am or 2:00 pm as possible.
Date Number of Images Time of Flight Notes
June 16 37 10.38
June 21 49 11:27 Increased number of passes for better stitching of edge plots.
June 24 49 10:45
July 01 49 10:16
July 12 59 09:51
One-the-fly flight plan due to hardware issues.
July 15 49 9:09
July 19 48 11:20
July 25 49 14:04
July 27 49 14:07
August 5 48 10:...
Facebook
TwitterSatellite images are essentially the eyes in the sky. Some of the recent satellites, such as WorldView-3, provide images with a spatial resolution of *** meters. This satellite with a revisit time of under ** hours can scan a new image of the exact location with every revisit.
Spatial resolution explained Spatial resolution is the size of the physical dimension that can be represented on a pixel of the image. Or in other words, spatial resolution is a measure of the smallest object that the sensor can resolve measured in meters. Generally, spatial resolution can be divided into three categories:
– Low resolution: over 60m/pixel. (useful for regional perspectives such as monitoring larger forest areas)
– Medium resolution: 10‒30m/pixel. (Useful for monitoring crop fields or smaller forest patches)
– High to very high resolution: ****‒5m/pixel. (Useful for monitoring smaller objects like buildings, narrow streets, or vehicles)
Based on the application of the imagery for the final product, a choice can be made on the resolution, as labor intensity from person-hours to computing power required increases with the resolution of the imagery.
Facebook
TwitterWorld Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3m resolution for select metropolitan areas around the world, 0.5m resolution across the United States and parts of Western Europe, and 1m resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3m to 0.03m resolution (down to ~1:280 in select communities). For more information on this map, including the terms of use, visit us online at https://goto.arcgisonline.com/maps/World_Imagery
Facebook
Twitterhttps://www.neonscience.org/data-samples/data-policies-citationhttps://www.neonscience.org/data-samples/data-policies-citation
Level 1 high-resolution orthorectified camera images are mosaiced and tiled into 1 km by 1 km data sets. Mosiac is output onto a fixed, uniform spatial grid using nearest-neighbor resampling; spatial resolution is at least 0.1 m.
Facebook
TwitterThe Aerial Photography Single Frame Records collection is a large and diverse group of imagery acquired by Federal organizations from 1937 to the present. Over 6.4 million frames of photographic images are available for download as medium and high resolution digital products. The high resolution data provide access to photogrammetric quality scans of aerial photographs with sufficient resolution to reveal landscape detail and to facilitate the interpretability of landscape features. Coverage is predominantly over the United States and includes portions of Central America and Puerto Rico. Individual photographs vary in scale, size, film type, quality, and coverage.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
'High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map. A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, color infrared, or color near infrared (4-band) with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel. '
Facebook
TwitterHigh resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.
A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.