Satellite images are essentially the eyes in the sky. Some of the recent satellites, such as WorldView-3, provide images with a spatial resolution of 0.3 meters. This satellite with a revisit time of under 24 hours can scan a new image of the exact location with every revisit.
Spatial resolution explained Spatial resolution is the size of the physical dimension that can be represented on a pixel of the image. Or in other words, spatial resolution is a measure of the smallest object that the sensor can resolve measured in meters. Generally, spatial resolution can be divided into three categories:
– Low resolution: over 60m/pixel. (useful for regional perspectives such as monitoring larger forest areas)
– Medium resolution: 10‒30m/pixel. (Useful for monitoring crop fields or smaller forest patches)
– High to very high resolution: 0.30‒5m/pixel. (Useful for monitoring smaller objects like buildings, narrow streets, or vehicles)
Based on the application of the imagery for the final product, a choice can be made on the resolution, as labor intensity from person-hours to computing power required increases with the resolution of the imagery.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This image service contains high resolution satellite imagery for selected regions throughout the Yukon. Imagery is 1m pixel resolution, or better. Imagery was supplied by the Government of Yukon, and the Canadian Department of National Defense. All the imagery in this service is licensed. If you have any questions about Yukon government satellite imagery, please contact Geomatics.Help@gov.yk.can. This service is managed by Geomatics Yukon.
This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.
Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).
Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks.
The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data. Contact NSIDC User Services at nsidc@nsidc.org to order the data, and include an NSF OPP award number in the email.
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The folders in labels.zip contain labels for solar panel objects as part of the Solar Panels in Satellite Imagery dataset. The labels are partitioned based on corresponding image type: 31 cm native and 15.5 cm HD resolution imagery. In total, there are 2,542 object labels for each image type, following the same naming convention as the corresponding image chips. The corresponding image chips may be accessed at:
https://resources.maxar.com/product-samples/15-cm-hd-and-30-cm-view-ready-solar-panels-germany
The naming convention for all labels includes the name of the dataset, image type, tile identification number, minimum x bound, minimum y bound, and window size. The minimum bounds correspond to the origin of the chip in the full tile.
Labels are provided in .txt format compatible with the YOLTv4 architecture, where a single row in a label file contains the following information for one solar panel object: category, x-center, y-center, x-width, and y-width. Center and width values are normalized by chip sizes (416 by 416 pixels for native chips and 832 by 832 pixels for HD chips).
The geocoordinates for each solar panel object may be determined using the native resolution labels (found in the labels_native directory). The center and width values for each object, along with the relative location information provided by the naming convention for each label, may be used to determine the pixel coordinates for each object in the full, corresponding native resolution tile. The pixel coordinates may be translated to geocoordinates using the EPSG:32633 coordinate system and the following geotransform for each tile:
Tile 1: (307670.04, 0.31, 0.0, 5434427.100000001, 0.0, -0.31) Tile 2: (312749.07999999996, 0.31, 0.0, 5403952.860000001, 0.0, -0.31) Tile 3: (312749.07999999996, 0.31, 0.0, 5363320.540000001, 0.0, -0.31)
The cost of acquiring a satellite data was highest for the images from the GeoEye-1 satellite at 25 U.S. dollars per square kilometer of the image. Most of the satellite data have a minimum order quantities based on the company and the cost depends mostly on the spatial resolution of the satellite image.
Most of the satellites are commercially owned and provide users with data as an end product based on the requirement. Processing smaller patches of the raw images obtained from a satellite to an end product are not profitable. Hence, there is a minimum order limit of 25 to 50 square kilometers based on the requested product.
Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global commercial satellite imaging market size will be USD 10.21 billion in 2024 and will expand at a compound annual growth rate (CAGR) of 10.95% from 2024 to 2031.
• The global commercial satellite imaging market will expand significantly by 10.95% CAGR between 2024 to 2031. • North America held the major market of more than XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031. • Europe accounted for a share of over XX% of the global market size of USD XX million. • Asia Pacific held a market of around XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031. • Latin America's market will have more than XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031. • Middle East and Africa held the major market of around XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031. • The Geospatial Data Acquisition segment is set to rise due to the need for evaluating a range of economic factors, such as farming methods, infrastructure, urbanization, and environmental effects. Governments and businesses in the private sector are also investing heavily in satellite imaging to obtain information on urban planning and natural resources.
• The commercial satellite imaging market is driven by the increasing use of Satellite Images for real-time data access in defense applications, Government Support, rising demand for High-resolution imaging for various end-use applications, and Technological advancements leading to high-resolution satellite imaging. • North America held the highest commercial satellite imaging market revenue share in 2023.
Current Scenario of the Commercial Satellite Imaging Market
Key Drivers of the Commercial Satellite Imaging Market
Increasing the Use of Satellite Images for Real-Time Data Access in Defence Applications to Accelerate Market Growth
A comprehensive understanding of Automated Optical Inspection (AOI) and satellite imagery has become an advantage and a necessity in today's asymmetric warfare. Digital Elevation Models (DEMs) and 3D models of rural and urban regions may be produced quickly and reliably with the help of Airbus' Pleiades Neo military satellite. To determine if a target is mobile or fixed, high-resolution photos are particularly helpful. Furthermore, assets or targets can be recognized, identified, and detected down to the finest detail due to the Very High Resolution (VHR). Additionally, reliable topography data from satellite imagery helps the armed forces plan ahead and gain a comprehensive understanding of the situation. For instance, according to a report published by the Government of India, Digital Video Broadcasting-Satellite Version 2 (DVB-S2) technology has been added to the satellite-based communication network to improve efficiency and make the best use of available spectrum. More than 785 DCPW, State/UT Police, and CAPF-updated VSATs have been deployed.
(Source-https://www.mha.gov.in/sites/default/files/AnnualreportEnglish_04102023.pdf )
According to a news report by Airbus, Poland, and Airbus Defence and Space have signed a deal for the development, production, launch, and onboard supply of two high-performance optical Earth observation satellites as part of a geospatial intelligence system. Moreover, the contract includes the provision of Very High Resolution (VHR) imagery.
Thus, the increasing use of satellite images for real-time data access in defense applications accelerates market growth.
Government Support will drive the Commercial Satellite Imaging market-
Governments throughout the world are realizing increasingly how important sate...
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The satellite image of Canada is a composite of several individual satellite images form the Advanced Very High Resolution Radiometre (AVHRR) sensor on board various NOAA Satellites. The colours reflect differences in the density of vegetation cover: bright green for dense vegetation in humid southern regions; yellow for semi-arid and for mountainous regions; brown for the north where vegetation cover is very sparse; and white for snow and ice. An inset map shows a satellite image mosaic of North America with 35 land cover classes, based on data from the SPOT satellite VGT (vegetation) sensor.
QuickBird high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section.
In particular, QuickBird offers archive panchromatic products up to 0.60 m GSD resolution and 4-Bands Multispectral products up to 2.4 m GSD resolution.
Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard(2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12,000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm
4-Bands being an option from:
4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1) Natural Colour / Coloured Infrared (3-Band pan-sharpened) Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique intelligently increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well reconstructed details.
The data are 475 thematic land cover raster’s at 2m resolution. Land cover classification was to the land cover classes: Tree (1), Water (2), Barren (3), Other Vegetation (4) and Ice & Snow (8). Cloud cover and Shadow were sometimes coded as Cloud (5) and Shadow (6), however for any land cover application would be considered NoData. Some raster’s may have Cloud and Shadow pixels coded or recoded to NoData already. Commercial high-resolution satellite data was used to create the classifications. Usable image data for the target year (2010) was acquired for 475 of the 500 primary sample locations, with 90% of images acquired within ±2 years of the 2010 target. The remaining 25 of the 500 sample blocks had no usable data so were not able to be mapped. Tabular data is included with the raster classifications indicating the specific high-resolution sensor and date of acquisition for source imagery as well as the stratum to which that sample block belonged. Methods for this classification are described in Pengra et al. (2015). A 1-stage cluster sampling design was used where 500 (475 usable), 5 km x 5 km sample blocks were the primary sampling units (note; the nominal size was 5km x 5km blocks, but some have deviations in dimensions due only partial coverage of the sample block with usable imagery). Sample blocks were selected using stratified random sampling within a sample frame stratified by a modification of the Köppen Climate/Vegetation classification and population density (Olofsson et al., 2012). Secondary sampling units are each of the classified 2m pixels of the raster. This design satisfies the criteria that define a probability sampling design and thus serves as the basis to support rigorous design-based statistical inference (Stehman, 2000).
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
This dataset provides a seamless cloud-free 10m resolution satellite imagery layer of the New Zealand mainland and offshore islands.
The imagery was captured by the European Space Agency Sentinel-2 satellites between September 2020 - April 2021.
Technical specifications:
This is a visual product only. The data has been downsampled from 12-bits to 8-bits, and the original values of the images have been modified for visualisation purposes.
High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.
A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
SENTINEL-2 is a wide-swath, high-resolution, multi-spectral imaging mission, supporting Copernicus Land Monitoring studies, including the monitoring of vegetation, soil and water cover, as well as observation of inland waterways and coastal areas.
The SENTINEL-2 Multispectral Instrument (MSI) samples 13 spectral bands: four bands at 10 metres, six bands at 20 metres and three bands at 60 metres spatial resolution.
The acquired data, mission coverage and high revisit frequency provides for the generation of geoinformation at local, regional, national and international scales. The data is designed to be modified and adapted by users interested in thematic areas such as: • spatial planning • agro-environmental monitoring • water monitoring • forest and vegetation monitoring • land carbon, natural resource monitoring • global crop monitoring
https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf
WorldView-2 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. In particular, WorldView-2 offers archive and tasking panchromatic products up to 0.46 m GSD resolution, and 4-Bands/8-Bands Multispectral products up to 1.84 m GSD resolution. Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard (2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12.000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm 8-bands Standard(2A)/View Ready Standard (OR2A) 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12.000 Orthorectified 30 cm, 40 cm, 50/60 cm 4-Bands being an optional from: 4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1). 8-Bands being an optional from: 8-Band Multispectral (COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2) 8-Band Bundle (PAN, COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2). Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels, improves the visual clarity and allows to obtain an aesthetically refined imagery with precise edges and well reconstructed details. As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.
https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf
WorldView-3 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. In particular, WorldView-3 offers archive and tasking panchromatic products up to 0.31m GSD resolution, 4-Bands/8-Bands products up to 1.24 m GSD resolution, and SWIR products up to 3.70 m GSD resolution. Band Combination Data Processing Level Resolution High Res Optical: Panchromatic and 4-bands Standard(2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map Ready (Ortho) 1:12.000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm High Res Optical: 8-bands Standard(2A)/View Ready Standard (OR2A) 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map Ready (Ortho) 1:12.000 Orthorectified 30 cm, 40 cm, 50/60 cm High Res Optical: SWIR Standard(2A)/View Ready Standard (OR2A) 3.7 m or 7.5 m (depending on the collection date) Map Ready (Ortho) 1:12.000 Orthorectified 4-Bands being an optional from: 4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1) 8-Bands being an optional from: 8-Band Multispectral (COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2) 8-Band Bundle (PAN, COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2) Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well reconstructed details. As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.
https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf
GeoEye-1 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4 and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. In particular, GeoEye-1 offers archive and tasking panchromatic products up to 0.41 m GSD resolution and Multispectral products up to 1.65 m GSD resolution. Band Combination Data Processing Level Resolutions Panchromatic and 4-bands Standard (2A) / View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12,000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm The options for 4-Bands are the following: 4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1). Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well-reconstructed details. As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An aerial imagery basemap of New Zealand in Web Mercator (WGS 1984) using the latest quality data from Land Information New Zealand.Add the map service directly to your ArcGIS Online map, or copy the Web Map Tile Service (WMTS) URL below for use in the desktop.This basemap is also available in NZTM from: https://linz.maps.arcgis.com/home/item.html?id=39cf07ebf8a2413696d8fd4d80570b84 The LINZ Aerial Imagery Basemap details New Zealand in high resolution - from a nationwide view all the way down to individual buildings.This basemap combines the latest high-resolution aerial imagery down to 5cm in urban areas and 10m satellite imagery to provide full coverage of mainland New Zealand, Chathams and other offshore islands.LINZ Basemaps are powered by data from the LINZ Data Service and other authoritative open data sources, providing you with a basemap that is free to use under an open licence.A XYZ tile API (Web Mercator only) is also available for use in web and mobile applications.See more information or provide your feedback at https://basemaps.linz.govt.nz/.For attribution requirements and data sources see: https://www.linz.govt.nz/data/linz-data/linz-basemaps/data-attribution.
World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3m resolution for select metropolitan areas around the world, 0.5m resolution across the United States and parts of Western Europe, and 1m resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3m to 0.03m resolution (down to ~1:280 in select communities). For more information on this map, including the terms of use, visit us online at https://goto.arcgisonline.com/maps/World_Imagery
This map features satellite imagery for the world and high-resolution aerial imagery for many areas. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Imagery map service description.
Satellite images are essentially the eyes in the sky. Some of the recent satellites, such as WorldView-3, provide images with a spatial resolution of 0.3 meters. This satellite with a revisit time of under 24 hours can scan a new image of the exact location with every revisit.
Spatial resolution explained Spatial resolution is the size of the physical dimension that can be represented on a pixel of the image. Or in other words, spatial resolution is a measure of the smallest object that the sensor can resolve measured in meters. Generally, spatial resolution can be divided into three categories:
– Low resolution: over 60m/pixel. (useful for regional perspectives such as monitoring larger forest areas)
– Medium resolution: 10‒30m/pixel. (Useful for monitoring crop fields or smaller forest patches)
– High to very high resolution: 0.30‒5m/pixel. (Useful for monitoring smaller objects like buildings, narrow streets, or vehicles)
Based on the application of the imagery for the final product, a choice can be made on the resolution, as labor intensity from person-hours to computing power required increases with the resolution of the imagery.