10 datasets found
  1. W

    US Virgin Islands: High Resolution Population Density Maps + Demographic...

    • cloud.csiss.gmu.edu
    zip
    Updated Jul 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2019). US Virgin Islands: High Resolution Population Density Maps + Demographic Estimates [Dataset]. https://cloud.csiss.gmu.edu/uddi/es_AR/dataset/us-virgin-islands-high-resolution-population-density-maps-demographic-estimates
    Explore at:
    zip(130832), zip(168060), zip(130891), zip(168590), zip(167812), zip(131416), zip(178548), zip(131200), zip(130845), zip(168416), zip(130872), zip(130443), zip(167976), zip(167973)Available download formats
    Dataset updated
    Jul 23, 2019
    Dataset provided by
    UN Humanitarian Data Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    U.S. Virgin Islands
    Description

    The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery.

  2. M

    High Resolution Population Density Maps - Africa

    • catalog.midasnetwork.us
    tiff, zip
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIDAS Coordination Center (2023). High Resolution Population Density Maps - Africa [Dataset]. https://catalog.midasnetwork.us/collection/290
    Explore at:
    zip, tiffAvailable download formats
    Dataset updated
    Jul 12, 2023
    Dataset authored and provided by
    MIDAS Coordination Center
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    Africa
    Variables measured
    age-stratified, phenotypic sex, population demographic census
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    The dataset is a zip file that contains 28 cloud optimized tiff files that cover the continent of Africa. Each of the 28 files represents a region or area - these are not divided by country. These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe. To create the high-resolution maps, machine learning techniques are used to identify buildings from commercially available satellite images then general population estimates are overlaid based on publicly available census data and other population statistics. The resulting maps are the most detailed and actionable tools available for aid and research organizations.

  3. f

    Data from: Mapping population distribution from open address data:...

    • tandf.figshare.com
    pdf
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nelson Mileu; Margarida Queirós; Paulo Morgado (2023). Mapping population distribution from open address data: application to mainland Portugal [Dataset]. http://doi.org/10.6084/m9.figshare.21036719.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Nelson Mileu; Margarida Queirós; Paulo Morgado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Portugal
    Description

    Mapping population distribution remains a common need in various fields of studies. Several approaches and methodologies have been adopted to obtain high-resolution population distribution grids. The use of addresses data to obtain gridded population distribution maps emerges as one of the more recent and accurate approaches. The increasing dissemination and availability of geo-data and more specifically address data allow us to obtain updated, granular and high spatial resolution population distribution maps. This paper describes a bottom-up open addresses data mapping-based approach of gridded population distribution with a fine spatial resolution. Through a QGIS plugin, an adaptation of the housing unit methodology was implemented to obtain 500 m × 500 and 250 m × 250 m population grids for mainland Portugal. The results showed that the use of reliable addresses databases can generate gridded population distribution maps with a high degree of adjustment to reality.

  4. d

    Domestic well locations and populations served in the contiguous U.S.: 1990,...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Domestic well locations and populations served in the contiguous U.S.: 1990, Block-group method (BGM) map. [Dataset]. https://catalog.data.gov/dataset/domestic-well-locations-and-populations-served-in-the-contiguous-u-s-1990-block-group-meth
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    In this dataset we present two maps that estimate the location and population served by domestic wells in the contiguous United States. The first methodology, called the “Block Group Method” or BGM, builds upon the original block-group data from the 1990 census (the last time the U.S. Census queried the population regarding their source of water) by incorporating higher resolution census block data. The second methodology, called the “Road-Enhanced Method” or REM, refines the locations by using a buffer expansion and shrinkage technique along roadways to define areas where domestic wells exist. The fundamental assumption with this method is that houses (and therefore domestic wells) are located near a named road. The results are presented as two nationally consistent domestic-well population datasets. While both methods can be considered valid, the REM map is more precise in locating domestic wells; the REM map had a smaller amount of spatial bias (nearly equal vs biased in type 1 error), total error (10.9% vs 23.7%,), and distance error (2.0 km vs 2.7 km), when comparing the REM and BGM maps to a California calibration map. However, the BGM map is more inclusive of all potential locations for domestic wells. The primary difference in the BGM and the REM is the mapping of low density areas. The REM has a 57% reduction in areas mapped as low density (populations greater than 0 but less than 1 person per km), concentrating populations into denser regions. Therefore, if one is trying to capture all of the potential areas of domestic-well usage, then the BGM map may be more applicable. If location is more imperative, then the REM map is better at identifying areas of the landscape with the highest probability of finding a domestic well. Depending on the purpose of a study, a combination of both maps can be used. For space concerns, the datasets have been divided into two separate geodatabases. The BGM map geodatabase and the REM map database.

  5. Estimated Demographics for Water Service Area Boundaries ***

    • redivis.com
    application/jsonl +7
    Updated Nov 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Impact Data Collaborative (2023). Estimated Demographics for Water Service Area Boundaries *** [Dataset]. https://redivis.com/datasets/09rm-1vpq3tj3j
    Explore at:
    stata, arrow, avro, spss, csv, parquet, sas, application/jsonlAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Redivis Inc.
    Authors
    Environmental Impact Data Collaborative
    Area covered
    Description

    Abstract

    Dataset quality ***: High quality dataset that was created by and quality-checked by the EIDC team

    This dataset identifies the communities served by water systems across the U.S., based on the very first national dataset of drinking water service area boundaries (SAB) provided by the Environmental Policy Innovation Center (EPIC). The dataset leverages the a raster approach developed by the EIDC team and provides crosswalking weights to link water service area boundaries with census geography. This alignment allows for the computation of census demographics within water service areas, providing valuable insights into the populations served by these water systems.

    Methodology

    The crosswalking data is generated using a fine-tuned raster approach, which is designed to realign mismatched geographical units. This approach utilizes a high resolution raster layer of population density to map water service areas and census geography. Essentially, this realignment is based on population density residing within the overlapping areas between water service areas and census blocks. In other words, the realignment is adjusted to more accurately reflect the distribution of the population within these areas. The final output of this process is a set of crosswalking weights from census blocks to water service areas. These weights represent the proportion of the population within each census block that falls within a given water service area.

    The current version of the data is based on SimpleLab, EPIC (2022). U.S. Community Water Systems Service Boundaries, v2.0.0, HydroShare.

    Usage

    Crosswalk Weights from Census to Service Area Bounds is the crosswalking file from census blocks to water service area boundaries. Each water service area (identified by PWSID) is matched with one or more census blocks. WEIGHT can be applied to calculate the weighted estimates from census data to the water service area.

    Demographics for Service Area Bounds includes the information of the water service areas provided by EPIC and some pre-supplied race-ethnicity and income information calculated using the cross-walking weights.

  6. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/surging-seas-risk-zone-map
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  7. Frontier and Remote Area Codes

    • agdatacommons.nal.usda.gov
    • gimi9.com
    • +3more
    bin
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Economic Research Service (2025). Frontier and Remote Area Codes [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Frontier_and_Remote_Area_Codes/25696389
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    USDA Economic Research Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Frontier and Remote Area (FAR) codes provide a statistically-based, nationally-consistent, and adjustable definition of territory in the U.S. characterized by low population density and high geographic remoteness.

    To assist in providing policy-relevant information about conditions in sparsely settled, remote areas of the U.S. to public officials, researchers, and the general public, ERS has developed ZIP-code-level frontier and remote (FAR) area codes. The aim is not to provide a single definition. Instead, it is to meet the demand for a delineation that is both geographically detailed and adjustable within reasonable ranges, in order to be usefully applied in diverse research and policy contexts. This initial set, based on urban-rural data from the 2000 decennial census, provides four separate FAR definition levels, ranging from one that is relatively inclusive (18 million FAR residents) to one that is more restrictive (4.8 million FAR residents).This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: State and ZIP code level tables For complete information, please visit https://data.gov.

  8. a

    Catholic Carbon Footprint Story Map Map

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Story Map Map [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/maps/8c3112552bdd4bd3962ab8b94bcf6ee5
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholic Carbon Footprint Story Map Map:DataBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Map Development: Molly BurhansMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  9. n

    Soil properties data for Counties in the Contiguous United States

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Soil properties data for Counties in the Contiguous United States [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214584233-SCIOPS
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1990 - Dec 31, 1990
    Area covered
    Description

    This dataset provides agricultural lands soil property data for US Counties within the contiguous US. Variable include with this dataset include: high and low soil bulk density (g C/cm3 soil), high and low clay content (fraction), high and low soil organic carbon (g C/g soil), and soil pH.

    Our source for the Soil organic carbon (SOC), clay content, and bulk density data was the US Environmental Protection Agency (EPA) [Imhoff JC, Carsel RF, Kittle JR, Hummel PR (1990) Data base analyzer and parameter estimator (DBAPE) interactive computer program user's manual. EPA/600/3-89/083, USEPA Environ. Res. Lab. Athens, GA 30613-7799]. They worked from a database developed by the Soil Conservation Service (now Natural Resource Conservation Service) [USDA Soil Conservation Service (1985) User manual for interactive soils databases: nation soil survey area database, soil interpretations record database, and plant name database. USDA SCS, Fort Collins, CO]. To find this and similar data now, visit the National Soils Data Access Facility web site: http://soils.usda.gov/

    Our source for the pH data was the Food and Agriculture Organization of the United Nations (FAO) Digital Soil Map of the World and Derived Soil Properties, Version 3.5, Nov. 1995, original scale 1:5 000 000). See [ http://www.fao.org/ ] for general FAO information and see [ http://www.fao.org/ag/agl/agll/index.stm ] for details on the soils data. We printed a pH map for the US, overlaid a state boundaries map, and then read off values for each region of each state. The coarse resolution of the map meant that most counties (and even many states) had only a single pH value.

    High and low values are reported for each county, and represent the range in a particular soil property found in the county. Many counties have only a single value and it is reported as both the high and the low value. Values are from the database surface soil layer (defined as either 'the plow layer' or 'the A, E, Ab, and EB horizons of the solum'). Values are based only on soils for agricultural lands in the county, not all soils.

    EOS-WEBSTER provides seven datasets which provide county-level data on agricultural management, crop production, livestock, soil properties, geography and population. These datasets were assembled during the mid-1990's to provide driving variables for an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. The data (except nitrogen fertilizer use) were all derived from publicly available, national databases. Each dataset has a separate DIF.

    The US County data has been divided into seven datasets.

    US County Data Datasets:

    1) Agricultural Management 2) Crop Data (NASS Crop data) 3) Crop Summary (NASS Crop data) 4) Geography and Population 5) Land Use 6) Livestock Populations 7) Soil Properties

  10. Where Will Tree Planting Improve Urban Heat Health?

    • hub.arcgis.com
    • keep-cool-global-community.hub.arcgis.com
    • +1more
    Updated Nov 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Where Will Tree Planting Improve Urban Heat Health? [Dataset]. https://hub.arcgis.com/datasets/3ae325e53b1b47578975c5ef14068fd1
    Explore at:
    Dataset updated
    Nov 14, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Extreme heat events, or heat waves, are on the rise and becoming more intense according to the U.S. Environmental Protection Agency (EPA). These events are more than just an annoyance and can lead to illness and death, particularly among vulnerable populations including seniors and young people. The EPA also states prolonged exposure to these heat events can lead to other impacts such as damaging crops or killing livestock. Climate resilience planning is one approach to preparing for and mitigating the effects of extreme heat. Climate resilience planning in local communities involves several steps including assessing vulnerability and risk.© 2024 Adobe Stock. All rights reserved.It is a fact that trees can lower the surrounding air temperature through evapotranspiration, providing shade, and taking up space that might otherwise be converted to pavement. Lots of pavement, blacktop roads, and concrete buildings absorb the sun's heat and radiate that heat into the surrounding air. This is especially evident in highly developed urban areas which can get up to 20 degrees warmer than surrounding vegetated areas. These hot zones are referred to as Urban Heat Islands. One way to reduce the warmer temperatures in urban areas is to plant trees and other vegetation. This layer displays census tracts that are ranked according to which would benefit most from tree planting. The ranking is based upon a composite index built with the following attributes:High Summer Average Surface Temperature (°F)Percent of Tract Covered by Tree Canopy (%)Population Density (ppl/km2)These attribute links take you to the original data sources. Preprocessing was needed to prepare many of these inputs for inclusion in our index. The links are provided for reference only.This layer is one of a series developed to support local climate resilience planning. Intended as planning tools for policy makers, climate resilience planners, and community members, these layers highlight areas of the community that are most likely to benefit from the resilience intervention the map supports. Each layer focuses on one specific heat resilience intervention intended to help mitigate against the climate hazard.Planting trees along streets and over dark surfaces in urban areas is proven to reduce air temperature which helps to mitigate the impacts of urban heat islands. For more resources on extreme heat visit heat.gov where you can learn about the impacts of tree planting campaigns. The heat resilience index (HRI) and methodology were developed in collaboration with the U.S. Centers for Disease Control and Prevention (CDC) and the UC Davis, Department of Public Health.Layers in the Extreme Heat hazard intervention series include Where Will a Buddy Program Improve Urban Heat Health?Where Will Tree Planting Improve Urban Heat Health? Where Will Cooling Centers Improve Urban Heat Health?Did you know you can build your own climate resilience index or use ours and customize it? The Customize a climate resilience index Tutorial provides more information on the index and also walks you through steps for taking our index and customizing it to your needs so you can create intervention maps better suited to your location and sourced from your own higher resolution data. For more information about how Esri enriched the census tracts with exposure, demographic, and environmental data to create composite indices called intervention indices, please read this technical reference.This feature layer was created from the Climate Resilience Planning Census Tracts hosted feature layer view and is one of 18 similar intervention layers, all of which can be found in ArcGIS Living Atlas of the World.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
UN Humanitarian Data Exchange (2019). US Virgin Islands: High Resolution Population Density Maps + Demographic Estimates [Dataset]. https://cloud.csiss.gmu.edu/uddi/es_AR/dataset/us-virgin-islands-high-resolution-population-density-maps-demographic-estimates

US Virgin Islands: High Resolution Population Density Maps + Demographic Estimates

Explore at:
zip(130832), zip(168060), zip(130891), zip(168590), zip(167812), zip(131416), zip(178548), zip(131200), zip(130845), zip(168416), zip(130872), zip(130443), zip(167976), zip(167973)Available download formats
Dataset updated
Jul 23, 2019
Dataset provided by
UN Humanitarian Data Exchange
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
U.S. Virgin Islands
Description

The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery.

Search
Clear search
Close search
Google apps
Main menu