100+ datasets found
  1. Countries with the highest death rates in 2022

    • statista.com
    Updated Aug 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the highest death rates in 2022 [Dataset]. https://www.statista.com/statistics/562733/ranking-of-20-countries-with-highest-death-rates/
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    As of 2022, the countries with the highest death rates worldwide were Ukraine, Bulgaria, and Moldova. In these countries, there were 17 to 21 deaths per 1,000 people. The country with the lowest death rate is Qatar, where there is just one death per 1,000 people. Leading causes of death The leading causes of death worldwide are by far, ischaemic heart disease and stroke, accounting for a combined 27 percent of all deaths in 2019. In that year, there were 8.89 million deaths worldwide from ischaemic heart disease and 6.19 million from stroke. Interestingly, a worldwide survey from that year found that people greatly underestimate the proportion of deaths caused by cardiovascular disease, but overestimate the proportion of deaths caused by suicide, interpersonal violence, and substance use disorders. Death in the United States In 2022, there were around 3.27 million deaths in the United States. The leading causes of death in the United States are currently heart disease and cancer, accounting for a combined 40 percent of all deaths in 2022. Lung and bronchus cancer is the deadliest form of cancer worldwide, as well as in the United States. In the U.S. this form of cancer is predicted to cause around 65,790 deaths among men alone in the year 2024. Prostate cancer is the second-deadliest cancer for men in the U.S. while breast cancer is the second deadliest for women. In 2022, the fourth leading cause of death in the United States was COVID-19. Deaths due to COVID-19 resulted in a significant rise in the total number of deaths in the U.S. in 2020 and 2021 compared to 2019.

  2. Countries with the highest infant mortality rate 2024

    • statista.com
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the highest infant mortality rate 2024 [Dataset]. https://www.statista.com/statistics/264714/countries-with-the-highest-infant-mortality-rate/
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    This statistic shows the 20 countries* with the highest infant mortality rate in 2024. An estimated 101.3 infants per 1,000 live births died in the first year of life in Afghanistan in 2024. Infant and child mortality Infant mortality usually refers to the death of children younger than one year. Child mortality, which is often used synonymously with infant mortality, is the death of children younger than five. Among the main causes are pneumonia, diarrhea – which causes dehydration – and infections in newborns, with malnutrition also posing a severe problem. As can be seen above, most countries with a high infant mortality rate are developing countries or emerging countries, most of which are located in Africa. Good health care and hygiene are crucial in reducing child mortality; among the countries with the lowest infant mortality rate are exclusively developed countries, whose inhabitants usually have access to clean water and comprehensive health care. Access to vaccinations, antibiotics and a balanced nutrition also help reducing child mortality in these regions. In some countries, infants are killed if they turn out to be of a certain gender. India, for example, is known as a country where a lot of girls are aborted or killed right after birth, as they are considered to be too expensive for poorer families, who traditionally have to pay a costly dowry on the girl’s wedding day. Interestingly, the global mortality rate among boys is higher than that for girls, which could be due to the fact that more male infants are actually born than female ones. Other theories include a stronger immune system in girls, or more premature births among boys.

  3. Mortality rates, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Mortality rates, by age group [Dataset]. http://doi.org/10.25318/1310071001-eng
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.

  4. Infant Mortality, Deaths Per 1,000 Live Births (LGHC Indicator)

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    chart, csv, zip
    Updated Dec 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Infant Mortality, Deaths Per 1,000 Live Births (LGHC Indicator) [Dataset]. https://data.chhs.ca.gov/dataset/infant-mortality-deaths-per-1000-live-births-lghc-indicator-01
    Explore at:
    chart, csv(1102181), zipAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This is a source dataset for a Let's Get Healthy California indicator at https://letsgethealthy.ca.gov/. Infant Mortality is defined as the number of deaths in infants under one year of age per 1,000 live births. Infant mortality is often used as an indicator to measure the health and well-being of a community, because factors affecting the health of entire populations can also impact the mortality rate of infants. Although California’s infant mortality rate is better than the national average, there are significant disparities, with African American babies dying at more than twice the rate of other groups. Data are from the Birth Cohort Files. The infant mortality indicator computed from the birth cohort file comprises birth certificate information on all births that occur in a calendar year (denominator) plus death certificate information linked to the birth certificate for those infants who were born in that year but subsequently died within 12 months of birth (numerator). Studies of infant mortality that are based on information from death certificates alone have been found to underestimate infant death rates for infants of all race/ethnic groups and especially for certain race/ethnic groups, due to problems such as confusion about event registration requirements, incomplete data, and transfers of newborns from one facility to another for medical care. Note there is a separate data table "Infant Mortality by Race/Ethnicity" which is based on death records only, which is more timely but less accurate than the Birth Cohort File. Single year shown to provide state-level data and county totals for the most recent year. Numerator: Infants deaths (under age 1 year). Denominator: Live births occurring to California state residents. Multiple years aggregated to allow for stratification at the county level. For this indicator, race/ethnicity is based on the birth certificate information, which records the race/ethnicity of the mother. The mother can “decline to state”; this is considered to be a valid response. These responses are not displayed on the indicator visualization.

  5. C

    California Hospital Inpatient Mortality Rates and Quality Ratings

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, pdf, xls, zip
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). California Hospital Inpatient Mortality Rates and Quality Ratings [Dataset]. https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings
    Explore at:
    csv(3189182), pdf, pdf(150793), pdf(288823), pdf(280571), pdf(238223), pdf(267033), pdf(798633), pdf(306372), pdf(730246), pdf(363570), pdf(791847), pdf(100994), xls(166400), pdf(134270), pdf(445171), pdf(713960), pdf(700782), xls(163840), xls(141824), xls(165376), xls(143872), xls(172032), csv(6420523), pdf(83317), pdf(419645), xls, pdf(264343), pdf(114573), xls(214016), zip, pdf(451935), pdf(538945), pdf(254426), pdf(1235022), pdf(796065), pdf(452858), pdf(146736), pdf(253971)Available download formats
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Area covered
    California
    Description

    The dataset contains risk-adjusted mortality rates, quality ratings, and number of deaths and cases for 6 medical conditions treated (Acute Stroke, Acute Myocardial Infarction, Heart Failure, Gastrointestinal Hemorrhage, Hip Fracture and Pneumonia) and 5 procedures performed (Abdominal Aortic Aneurysm Repair, Unruptured/Open, Abdominal Aortic Aneurysm Repair, Unruptured/Endovascular, Carotid Endarterectomy, Pancreatic Resection, Percutaneous Coronary Intervention) in California hospitals. The 2022 IMIs were generated using AHRQ Version 2023, while previous years' IMIs were generated with older versions of AHRQ software (2021 IMIs by Version 2022, 2020 IMIs by Version 2021, 2019 IMIs by Version 2020, 2016-2018 IMIs by Version 2019, 2014 and 2015 IMIs by Version 5.0, and 2012 and 2013 IMIs by Version 4.5). The differences in the statistical method employed and inclusion and exclusion criteria using different versions can lead to different results. Users should not compare trends of mortality rates over time. However, many hospitals showed consistent performance over years; “better” performing hospitals may perform better and “worse” performing hospitals may perform worse consistently across years. This dataset does not include conditions treated or procedures performed in outpatient settings. Please refer to statewide table for California overall rates: https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings/resource/af88090e-b6f5-4f65-a7ea-d613e6569d96

  6. Tuberculosis death rate in high-burden countries 2019

    • statista.com
    Updated May 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Tuberculosis death rate in high-burden countries 2019 [Dataset]. https://www.statista.com/statistics/509760/rate-of-tuberculosis-mortality-in-high-burden-countries/
    Explore at:
    Dataset updated
    May 20, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    This statistic depicts the mean tuberculosis death rates in high-burden countries worldwide in 2019, per 100,000 population. The Central African Republic led the ranking that year with a mean mortality rate of about 98 per 100,000 population.

  7. a

    Cumulative COVID-19 Mortality

    • egis-lacounty.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Dec 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Cumulative COVID-19 Mortality [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/cumulative-covid-19-mortality
    Explore at:
    Dataset updated
    Dec 21, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Deaths were determined to be COVID-associated if they met the Department of Public Health's surveillance definition at the time of death.The cumulative COVID-19 mortality rate can be used to measure the most severe impacts of COVID-19 in a community. There have been documented inequities in COVID-19 mortality rates by demographic and geographic factors. Black and Brown residents, seniors, and those living in areas with higher rates of poverty have all been disproportionally impacted.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  8. d

    SHMI depth of coding contextual indicators

    • digital.nhs.uk
    csv, pdf, xlsx
    Updated Jul 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SHMI depth of coding contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2024-07
    Explore at:
    csv(8.3 kB), pdf(224.5 kB), xlsx(49.1 kB), xlsx(76.1 kB), xlsx(47.1 kB), pdf(224.1 kB)Available download formats
    Dataset updated
    Jul 11, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Mar 1, 2023 - Feb 29, 2024
    Area covered
    England
    Description

    These indicators are designed to accompany the SHMI publication. As well as information on the main condition the patient is in hospital for (the primary diagnosis), the SHMI data contain up to 19 secondary diagnosis codes for other conditions the patient is suffering from. This information is used to calculate the expected number of deaths. 'Depth of coding' is defined as the number of secondary diagnosis codes for each record in the data. A higher mean depth of coding may indicate a higher proportion of patients with multiple conditions and/or comorbidities, but may also be due to differences in coding practices between trusts. Contextual indicators on the mean depth of coding for elective and non-elective admissions are produced to support the interpretation of the SHMI. Notes: 1. There is a shortfall in the number of records for East Lancashire Hospitals NHS Trust (trust code RXR) and Harrogate and District NHS Foundation Trust (trust code RCD). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 2. Frimley Health NHS Foundation Trust (trust code RDU) stopped submitting data to the Secondary Uses Service (SUS) during June 2022 and did not start submitting data again until April 2023 due to an issue with their patient records system. This is causing a large shortfall in records and values for this trust should be viewed in the context of this issue. 3. Royal Surrey County Hospital NHS Foundation Trust (trust code RA2) has a high percentage of records with no data for secondary diagnoses. This is having a large impact on this trust’s data and values for this trust should therefore be interpreted with caution. 4. There is a high percentage of invalid diagnosis codes for Chesterfield Royal Hospital NHS Foundation Trust (trust code RFS), East Lancashire Hospitals NHS Trust (trust code RXR), Portsmouth Hospitals University NHS Trust (trust code RHU), and University Hospitals Plymouth NHS Trust (trust code RK9). Values for these trusts should therefore be interpreted with caution. 5. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the SHMI background quality report. 6. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.

  9. World: annual birth rate, death rate, and rate of natural population change...

    • statista.com
    Updated Jan 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). World: annual birth rate, death rate, and rate of natural population change 1950-2100 [Dataset]. https://www.statista.com/statistics/805069/death-rate-worldwide/
    Explore at:
    Dataset updated
    Jan 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The COVID-19 pandemic resulted in an increase in the global death rate, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rate, and this is known as the rate of natural change - on a national or regional level, population change is also affected by migration. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate, however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for falling death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.

  10. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(463460), csv(164006), csv(4689434), zip, csv(16301), csv(200270), csv(5034), csv(2026589), csv(5401561), csv(419332), csv(300479)Available download formats
    Dataset updated
    Mar 25, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  11. f

    Age and Type of Delivery as Risk Indicators for Maternal Mortality

    • scielo.figshare.com
    tiff
    Updated Jul 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isabella Mantovani Gomes Dias de Oliveira; Emílio Prado da Fonseca; Fabiana Mantovani Gomes França; Karine Laura Cortellazzi; Vanessa Pardi; Antonio Carlos Pereira; Elaine Pereira da Silva Tagliaferro (2023). Age and Type of Delivery as Risk Indicators for Maternal Mortality [Dataset]. http://doi.org/10.6084/m9.figshare.23659363.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jul 11, 2023
    Dataset provided by
    SciELO journals
    Authors
    Isabella Mantovani Gomes Dias de Oliveira; Emílio Prado da Fonseca; Fabiana Mantovani Gomes França; Karine Laura Cortellazzi; Vanessa Pardi; Antonio Carlos Pereira; Elaine Pereira da Silva Tagliaferro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Objective: This study assessed maternal mortality (MM) and related factors in a large-sized municipality in the Southeastern region of Brazil (Campinas, São Paulo) during the period 2000-2015. Methods: This study consisted of two phases: 1. An analytical nested case-control phase that assessed the impact of individual and contextual variables on MM; and 2. an ecological phase designed to contextualize maternal deaths by means of spatial analysis. The case group consisted of all maternal deaths (n = 87) and the control group consisted of 348 women who gave birth during the same period. Data analysis included descriptive statistics, association, and multiple logistic regression (MLR) tests at p < 0.05 as well as spatial analysis. Results: Maternal Mortality Ratio was 37 deaths per 100.000 live births. Deaths were dispersed throughout the urban territory and no formation of cluster was observed. MLR showed that pregnant women aged > 35 years old (OR = 2.63) or those with cesarean delivery (OR = 2.51) were more prone to maternal death. Conclusion: Maternal deaths were distributed dispersedly among the different socioeconomic levels and more prone to occur among older women or those undergoing cesarean deliveries.

  12. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +2more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  13. d

    Death Profiles by Leading Causes of Death

    • catalog.data.gov
    • data.chhs.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Death Profiles by Leading Causes of Death [Dataset]. https://catalog.data.gov/dataset/death-profiles-by-leading-causes-of-death-35077
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    Data for deaths by leading cause of death categories are now available in the death profiles dataset for each geographic granularity. The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death. Cause of death categories for years 1999 and later are based on tenth revision of International Classification of Diseases (ICD-10) codes. Comparable categories are provided for years 1979 through 1998 based on ninth revision (ICD-9) codes. For more information on the comparability of cause of death classification between ICD revisions see Comparability of Cause-of-death Between ICD Revisions.

  14. f

    Data_Sheet_1_Why Does Child Mortality Decrease With Age? Modeling the...

    • figshare.com
    • frontiersin.figshare.com
    txt
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Josef Dolejs; Helena Homolková (2023). Data_Sheet_1_Why Does Child Mortality Decrease With Age? Modeling the Age-Associated Decrease in Mortality Rate Using WHO Metadata From 14 European Countries.csv [Dataset]. http://doi.org/10.3389/fped.2020.527811.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Josef Dolejs; Helena Homolková
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Mortality rate rapidly decreases with age after birth, and, simultaneously, the spectrum of death causes show remarkable changes with age. This study analyzed age-associated decreases in mortality rate from diseases of all main chapters of the 10th revision of the International Classification of Diseases.Methods: The number of deaths was extracted from the mortality database of the World Health Organization. As zero cases could be ascertained for a specific age category, the Halley method was used to calculate the mortality rates in all possible calendar years and in all countries combined.Results: All causes mortality from the 1st day of life to the age of 10 years can be represented by an inverse proportion model with a single parameter. High coefficients of determination were observed for total mortality in all populations (arithmetic mean = 0.9942 and standard deviation = 0.0039).Slower or no mortality decrease with age was detected in the 1st year of life, while the inverse proportion method was valid for the age range [1, 10) years in most of all main chapters with three exceptions. The decrease was faster for the chapter “Certain conditions originating in the perinatal period” (XVI).The inverse proportion was valid already from the 1st day for the chapter “Congenital malformations, deformations and chromosomal abnormalities” (XVII).The shape of the mortality decrease was very different for the chapter “Neoplasms” (II) and the rates of mortality from neoplasms were age-independent in the age range [1, 10) years in all populations.Conclusion: The theory of congenital individual risks of death is presented and can explain the results. If it is valid, latent congenital impairments may be present among all cases of death that are not related to congenital impairments. All results are based on published data, and the data are presented as a supplement.

  15. COVID-19 death rates in 2020 countries worldwide as of April 26, 2022

    • statista.com
    Updated Mar 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 death rates in 2020 countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Mar 20, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  16. Single year of age and average age of death of people whose death was due to...

    • ons.gov.uk
    xlsx
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/singleyearofageandaverageageofdeathofpeoplewhosedeathwasduetoorinvolvedcovid19
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.

  17. f

    Data from: S1 Dataset -

    • figshare.com
    xlsx
    Updated Dec 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu-Yi Yu; Wei-Fan Ou; Jia-Jun Wu; Han-Shui Hsu; Chieh-Laing Wu; Kuang-Yao Yang; Ming-Cheng Chan (2023). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0295261.s005
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yu-Yi Yu; Wei-Fan Ou; Jia-Jun Wu; Han-Shui Hsu; Chieh-Laing Wu; Kuang-Yao Yang; Ming-Cheng Chan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundAcute respiratory distress syndrome (ARDS) is a common life-threatening condition in critically ill patients. Itis also an important public health issue because it can cause substantial mortality and health care burden worldwide. The objective of this study was to investigate therisk factors that impact ARDS mortality in a medical center in Taiwan.MethodsThis was a single center, observational study thatretrospectively analyzed data from adults in 6 intensive care units (ICUs) at Taichung Veterans General Hospital in Taiwan from 1st October, 2018to30th September, 2019. Patients needing invasive mechanical ventilation and meeting the Berlin definition criteria were included for analysis.ResultsA total of 1,778 subjects were screened in 6 adult ICUs and 370 patients fulfilled the criteria of ARDS in the first 24 hours of the ICU admission. Among these patients, the prevalenceof ARDS was 20.8% and the overall hospital mortality rate was 42.2%. The mortality rates of mild, moderate and severe ARDS were 35.9%, 43.9% and 46.5%, respectively. In a multivariate logistic regression model, combination of driving pressure (DP) > 14cmH2O and oxygenation (P/F ratio)≤150 was an independent predictor of mortality (OR2.497, 95% CI 1.201–5.191, p = 0.014). Patients with worse oxygenation and a higher driving pressure had the highest hospital mortality rate(p

  18. f

    Absolute and relative cross-validation error for single hold-out time...

    • plos.figshare.com
    xls
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jamie Perin; Li Liu; Luke C. Mullany; James M. Tielsch; Andrea Verhulst; Michel Guillot; Joanne Katz (2024). Absolute and relative cross-validation error for single hold-out time periods (25 unique 3-month periods or quarters), among 957 neonatal deaths in the NOMS cohort. [Dataset]. http://doi.org/10.1371/journal.pone.0304841.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Jamie Perin; Li Liu; Luke C. Mullany; James M. Tielsch; Andrea Verhulst; Michel Guillot; Joanne Katz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Absolute and relative cross-validation error for single hold-out time periods (25 unique 3-month periods or quarters), among 957 neonatal deaths in the NOMS cohort.

  19. d

    SHMI deprivation contextual indicators

    • digital.nhs.uk
    csv, pdf, xls, xlsx
    Updated Feb 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SHMI deprivation contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2024-02
    Explore at:
    pdf(250.1 kB), xls(97.8 kB), xlsx(117.4 kB), xls(98.8 kB), csv(15.2 kB), csv(12.5 kB), pdf(250.3 kB)Available download formats
    Dataset updated
    Feb 8, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Oct 1, 2022 - Sep 30, 2023
    Area covered
    England
    Description

    These indicators are designed to accompany the SHMI publication. The SHMI methodology does not make any adjustment for deprivation. This is because adjusting for deprivation might create the impression that a higher death rate for those who are more deprived is acceptable. Patient records are assigned to 1 of 5 deprivation groups (called quintiles) using the Index of Multiple Deprivation (IMD). The deprivation quintile cannot be calculated for some records e.g. because the patient's postcode is unknown or they are not resident in England. Contextual indicators on the percentage of provider spells and deaths reported in the SHMI belonging to each deprivation quintile are produced to support the interpretation of the SHMI. Notes: 1. As of the July 2020 publication, COVID-19 activity has been excluded from the SHMI. The SHMI is not designed for this type of pandemic activity and the statistical modelling used to calculate the SHMI may not be as robust if such activity were included. Activity that is being coded as COVID-19, and therefore excluded, is monitored in the contextual indicator 'Percentage of provider spells with COVID-19 coding' which is part of this publication. 2. Please note that there was a fall in the overall number of spells from March 2020 due to COVID-19 impacting on activity for England and the number has not returned to pre-pandemic levels. Further information at Trust level is available in the contextual indicator ‘Provider spells compared to the pre-pandemic period’ which is part of this publication. 3. There is a shortfall in the number of records for The Princess Alexandra Hospital NHS Trust (trust code RQW). Values for this trust are based on incomplete data and should therefore be interpreted with caution. 4. Frimley Health NHS Foundation Trust (trust code RDU) stopped submitting data to the Secondary Uses Service (SUS) during June 2022 and did not start submitting data again until April 2023 due to an issue with their patient records system. This is causing a large shortfall in records and values for this trust should be viewed in the context of this issue. 5. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 6. East Kent Hospitals University NHS Foundation Trust (trust code RVV) has a submission issue which is causing many of their patient spells to be duplicated in the HES Admitted Patient Care data. This means that the number of spells for this trust in this dataset are overstated by approximately 60,000, and the trust’s SHMI value will be lower as a result. Values for this trust should therefore be interpreted with caution. 7. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of the publication page.

  20. Data from: Effects of age and disease duration on excess mortality in...

    • zenodo.org
    • datadryad.org
    bin
    Updated Jun 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabien Rollot; Fabien Rollot (2022). Data from: Effects of age and disease duration on excess mortality in patients with multiple sclerosis from a French nationwide cohort [Dataset]. http://doi.org/10.5061/dryad.3bk3j9kjp
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 4, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Fabien Rollot; Fabien Rollot
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    French
    Description

    Objective: To determine the effects of current age and disease duration on excess mortality in multiple sclerosis, we described the dynamics of excess deaths rates over these two time scales and studied the impact of age at multiple sclerosis clinical onset on these dynamics, separately in each initial phenotype.

    Methods: We used data from 18 French multiple sclerosis expert centers participating in the Observatoire Français de la Sclérose en Plaques. Patients with multiple sclerosis living in metropolitan France and having a clinical onset between 1960 and 2014 were included. Vital status was updated on January 1st, 2016. For each multiple sclerosis phenotype separately (relapsing onset (R-MS) or primary progressive (PPMS)), we used an innovative statistical method to model the logarithm of excess death rates by a multidimensional penalized spline of age and disease duration.

    Results: Among 37524 patients (71% women, mean age at multiple sclerosis onset ± standard deviation 33.0 ± 10.6 years), 2883 (7.7%) deaths were observed and 7.8% of patients were lost-to-follow-up. For R-MS patients, there was no excess mortality during the first 10 years after disease onset; afterwards, whatever age at onset, excess death rates increased with current age. From current age 70, the excess death rates values converged and became identical whatever the age at disease onset, which means that disease duration had no more impact. Excess death rates were higher in men with an excess hazard ratio of 1.46 (95% confidence interval 1.25-1.70). In contrast, in PPMS patients, excess death rates rapidly increased from disease onset, and were associated with age at onset, but not with sex.

    Conclusions: In R-MS, current age has a stronger impact on multiple sclerosis mortality than disease duration while their respective effects are not so clear in PPMS.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Countries with the highest death rates in 2022 [Dataset]. https://www.statista.com/statistics/562733/ranking-of-20-countries-with-highest-death-rates/
Organization logo

Countries with the highest death rates in 2022

Explore at:
Dataset updated
Aug 21, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
Worldwide
Description

As of 2022, the countries with the highest death rates worldwide were Ukraine, Bulgaria, and Moldova. In these countries, there were 17 to 21 deaths per 1,000 people. The country with the lowest death rate is Qatar, where there is just one death per 1,000 people. Leading causes of death The leading causes of death worldwide are by far, ischaemic heart disease and stroke, accounting for a combined 27 percent of all deaths in 2019. In that year, there were 8.89 million deaths worldwide from ischaemic heart disease and 6.19 million from stroke. Interestingly, a worldwide survey from that year found that people greatly underestimate the proportion of deaths caused by cardiovascular disease, but overestimate the proportion of deaths caused by suicide, interpersonal violence, and substance use disorders. Death in the United States In 2022, there were around 3.27 million deaths in the United States. The leading causes of death in the United States are currently heart disease and cancer, accounting for a combined 40 percent of all deaths in 2022. Lung and bronchus cancer is the deadliest form of cancer worldwide, as well as in the United States. In the U.S. this form of cancer is predicted to cause around 65,790 deaths among men alone in the year 2024. Prostate cancer is the second-deadliest cancer for men in the U.S. while breast cancer is the second deadliest for women. In 2022, the fourth leading cause of death in the United States was COVID-19. Deaths due to COVID-19 resulted in a significant rise in the total number of deaths in the U.S. in 2020 and 2021 compared to 2019.

Search
Clear search
Close search
Google apps
Main menu