100+ datasets found
  1. Cancer death rates in the U.S. in 2022, by state

    • ai-chatbox.pro
    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Elflein (2024). Cancer death rates in the U.S. in 2022, by state [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F8656%2Fhealth-of-us-states%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    John Elflein
    Area covered
    United States
    Description

    In 2022, Utah had the lowest death rate from cancer among all U.S. states with around 116 deaths per 100,000 population. The states with the highest cancer death rates at that time were Mississippi, Kentucky and West Virginia. This statistic shows cancer death rates in the United States in 2022, by state.

  2. U.S. death rates from cancer by type and gender 2018-2022

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. death rates from cancer by type and gender 2018-2022 [Dataset]. https://www.statista.com/statistics/268492/us-death-rates-from-cancer-by-type-and-gender/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the period 2018 to 2022, a total of approximately *** men per 100,000 inhabitants died of cancers of all kinds in the United States, compared to an overall cancer death rate of *** per 100,000 population among women. This statistic shows cancer death rates in the U.S. for the period from 2018 to 2022, by type and gender.

  3. CDC WONDER: Cancer Statistics

    • healthdata.gov
    • data.virginia.gov
    • +5more
    application/rdfxml +5
    Updated Feb 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). CDC WONDER: Cancer Statistics [Dataset]. https://healthdata.gov/dataset/CDC-WONDER-Cancer-Statistics/mv5s-m59f
    Explore at:
    xml, tsv, application/rssxml, csv, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Feb 13, 2021
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  4. Cancer death rate for females worldwide by type of cancer in 2022

    • statista.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer death rate for females worldwide by type of cancer in 2022 [Dataset]. https://www.statista.com/statistics/1031301/cancer-death-rate-females-worldwide-by-type/
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Breast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.

  5. Deaths by cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

  6. f

    Declining Death Rates Reflect Progress against Cancer

    • plos.figshare.com
    tiff
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmedin Jemal; Elizabeth Ward; Michael Thun (2023). Declining Death Rates Reflect Progress against Cancer [Dataset]. http://doi.org/10.1371/journal.pone.0009584
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ahmedin Jemal; Elizabeth Ward; Michael Thun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe success of the “war on cancer” initiated in 1971 continues to be debated, with trends in cancer mortality variably presented as evidence of progress or failure. We examined temporal trends in death rates from all-cancer and the 19 most common cancers in the United States from 1970–2006.Methodology/Principal FindingsWe analyzed trends in age-standardized death rates (per 100,000) for all cancers combined, the four most common cancers, and 15 other sites from 1970–2006 in the United States using joinpoint regression model. The age-standardized death rate for all-cancers combined in men increased from 249.3 in 1970 to 279.8 in 1990, and then decreased to 221.1 in 2006, yielding a net decline of 21% and 11% from the 1990 and 1970 rates, respectively. Similarly, the all-cancer death rate in women increased from 163.0 in 1970 to 175.3 in 1991 and then decreased to 153.7 in 2006, a net decline of 12% and 6% from the 1991 and 1970 rates, respectively. These decreases since 1990/91 translate to preventing of 561,400 cancer deaths in men and 205,700 deaths in women. The decrease in death rates from all-cancers involved all ages and racial/ethnic groups. Death rates decreased for 15 of the 19 cancer sites, including the four major cancers, with lung, colorectum and prostate cancers in men and breast and colorectum cancers in women.Conclusions/SignificanceProgress in reducing cancer death rates is evident whether measured against baseline rates in 1970 or in 1990. The downturn in cancer death rates since 1990 result mostly from reductions in tobacco use, increased screening allowing early detection of several cancers, and modest to large improvements in treatment for specific cancers. Continued and increased investment in cancer prevention and control, access to high quality health care, and research could accelerate this progress.

  7. Cancer mortality rate in Latin America and the Caribbean 2022, by country

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cancer mortality rate in Latin America and the Caribbean 2022, by country [Dataset]. https://www.statista.com/statistics/991157/latin-america-cancer-death-rate/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Latin America, Americas, LAC
    Description

    The Latin American country with the highest age-standardized cancer mortality rate in 2022 was Uruguay, with ***** deaths per 100,000 population. Jamaica and Barbados followed, with cancer mortality rates of ***** and *****, respectively. As of that year, breast cancer was the cancer type with the highest incidence rate in Uruguay, as approximately ***** new cases were reported in the country.

  8. f

    Observed and Predicted Risk of Breast Cancer Death in Randomized Trials on...

    • plos.figshare.com
    doc
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philippe Autier; Mathieu Boniol; Michel Smans; Richard Sullivan; Peter Boyle (2023). Observed and Predicted Risk of Breast Cancer Death in Randomized Trials on Breast Cancer Screening [Dataset]. http://doi.org/10.1371/journal.pone.0154113
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Philippe Autier; Mathieu Boniol; Michel Smans; Richard Sullivan; Peter Boyle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe role of breast screening in breast cancer mortality declines is debated. Screening impacts cancer mortality through decreasing the number of advanced cancers with poor diagnosis, while cancer treatment works through decreasing the case-fatality rate. Hence, reductions in cancer death rates thanks to screening should directly reflect reductions in advanced cancer rates. We verified whether in breast screening trials, the observed reductions in the risk of breast cancer death could be predicted from reductions of advanced breast cancer rates.Patients and MethodsThe Greater New York Health Insurance Plan trial (HIP) is the only breast screening trial that reported stage-specific cancer fatality for the screening and for the control group separately. The Swedish Two-County trial (TCT)) reported size-specific fatalities for cancer patients in both screening and control groups. We computed predicted numbers of breast cancer deaths, from which we calculated predicted relative risks (RR) and (95% confidence intervals). The Age trial in England performed its own calculations of predicted relative risk.ResultsThe observed and predicted RR of breast cancer death were 0.72 (0.56–0.94) and 0.98 (0.77–1.24) in the HIP trial, and 0.79 (0.78–1.01) and 0.90 (0.80–1.01) in the Age trial. In the TCT, the observed RR was 0.73 (0.62–0.87), while the predicted RR was 0.89 (0.75–1.05) if overdiagnosis was assumed to be negligible and 0.83 (0.70–0.97) if extra cancers were excluded.ConclusionsIn breast screening trials, factors other than screening have contributed to reductions in the risk of breast cancer death most probably by reducing the fatality of advanced cancers in screening groups. These factors were the better management of breast cancer patients and the underreporting of breast cancer as the underlying cause of death. Breast screening trials should publish stage-specific fatalities observed in each group.

  9. Deaths from breast cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths from breast cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184615/deaths-by-breast-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The rate of breast cancer deaths in the U.S. has dramatically declined since 1950. As of 2023, the death rate from breast cancer was **** per 100,000 population. However, cancer is a serious public health issue in the United States and is the second leading cause of death among women. Breast cancer incidence Breast cancer symptoms include lumps or thickening of the breast tissue and may include changes to the skin. Breast cancer is driven by many factors, but age is a known risk factor. Among all age groups, the highest number of invasive breast cancer cases were among those aged 60 to 69. The incidence rate of new breast cancer cases is higher in some ethnicities than others. White, non-Hispanic women have the highest incidence rate of breast cancer, followed by non-Hispanic Black women. Breast cancer treatment Breast cancer treatments usually involve several methods, including surgery, chemotherapy and biological therapy. Types of cancer diagnosed at earlier stages often require fewer treatments. A majority of early stage breast cancer cases in the U.S. receive breast conserving surgery and radiation therapy.

  10. f

    Data from: Critical review of cancer mortality using hospital records and...

    • scielo.figshare.com
    jpeg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolina Panis; Aedra Carla Bufalo Kawasaki; Claudicéia Risso Pascotto; Eglea Yamamoto Della Justina; Geraldo Emílio Vicentini; Léia Carolina Lucio; Rosebel Trindade Cunha Prates (2023). Critical review of cancer mortality using hospital records and potential years of life lost [Dataset]. http://doi.org/10.6084/m9.figshare.6179639.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SciELO journals
    Authors
    Carolina Panis; Aedra Carla Bufalo Kawasaki; Claudicéia Risso Pascotto; Eglea Yamamoto Della Justina; Geraldo Emílio Vicentini; Léia Carolina Lucio; Rosebel Trindade Cunha Prates
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT Objective To determine and discuss cancer mortality rates in southern Brazil between 1988 and 2012. Methods This was a critical review of literature based on analysis of data concerning incidence and mortality of prostate cancer, breast cancer, bronchial and lung cancer, and uterine and ovarian cancer. Data were collected from the online database of the Brazil Instituto Nacional de Câncer José Alencar Gomes da Silva. Results The southern Brazil is the leading region of cancer incidence and mortality. Data on the cancer profile of this population are scarce especially in the States of Santa Catarina and Paraná. We observed inconsistency between data from hospital registers and death recorded. Conclusion Both cancer incidence and the mortality are high in Brazil. In addition, Brazil has great numbers of registers and deaths for cancer compared to worldwide rates. Regional risk factors might explain the high cancer rates.

  11. Breast cancer death rate in the U.S. in 2023, by state

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Breast cancer death rate in the U.S. in 2023, by state [Dataset]. https://www.statista.com/statistics/779894/death-rate-breast-cancer-us-by-state/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, there were **** deaths from breast cancer per 100,000 population in the state of South Dakota, the lowest of any state that year. This statistic shows the death rate from breast cancer in the U.S. in 2023, by state.

  12. f

    Estimation of cancer incidence in the state of São Paulo, Brazil, based on...

    • scielo.figshare.com
    jpeg
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolina Terra de Moraes Luizaga; Cassia Maria Buchalla (2023). Estimation of cancer incidence in the state of São Paulo, Brazil, based on real data [Dataset]. http://doi.org/10.6084/m9.figshare.22188010.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    SciELO journals
    Authors
    Carolina Terra de Moraes Luizaga; Cassia Maria Buchalla
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil, State of São Paulo
    Description

    This study aims to evaluate the feasibility of applying a method of estimating the incidence of cancer to regions of the state of São Paulo, Brazil, from real data (not estimated) and retrospectively comparing the results obtained with the official estimates. A method based on mortality and on the incidence to mortality (I/M) ration was used according to sex, age, and tumor location. In the I/M numerator, new cases of cancer were used from the population records of Jaú and São Paulo from 2006-2010; in the denominator, deaths from 2006-2010 in the respective areas, extracted from the national mortality system. The estimates resulted from the multiplication of I/M by the number of cancer deaths in 2010 for each region. Population data from the 2010 Demographic Census were used to estimate incidence rates. For the adjustment by age, the world standard population was used. We calculated the relative differences between the gross incidence rates estimated in this study and the official ones. Age-adjusted cancer incidence rates were 260.9/100,000 for men and 216.6/100,000 for women. Prostate cancer was the most common in males, whereas breast cancer was most common in females. Differences between the rates of this study and the official rates were 3.3% and 1.5% for each sex. The estimated incidence was compatible with the officially presented state profile, indicating that the application of real data did not alter the morbidity profile, while it did indicate different risk magnitudes. Despite the over-representativeness of the cancer registry with greater population coverage, the selected method proved feasible to point out different patterns within the state.

  13. Number and rates of new cases of primary cancer, by cancer type, age group...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Number and rates of new cases of primary cancer, by cancer type, age group and sex [Dataset]. http://doi.org/10.25318/1310011101-eng
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.

  14. f

    DataSheet_1_Emerging patterns and trends in global cancer burden...

    • frontiersin.figshare.com
    pdf
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Zhang; Yuwei Ding; Ning Zhu; Mi Mi; Yier Lu; Jia Zheng; Shanshan Weng; Ying Yuan (2023). DataSheet_1_Emerging patterns and trends in global cancer burden attributable to metabolic factors, based on the Global Burden of Disease Study 2019.pdf [Dataset]. http://doi.org/10.3389/fonc.2023.1032749.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Yan Zhang; Yuwei Ding; Ning Zhu; Mi Mi; Yier Lu; Jia Zheng; Shanshan Weng; Ying Yuan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe exponential growth of the cancer burden attributable to metabolic factors deserves global attention. We investigated the trends of cancer mortality attributable to metabolic factors in 204 countries and regions between 1990 and 2019.MethodsWe extracted data from the Global Burden of Disease Study (GBD) 2019 and assessed the mortality, age-standardized death rate (ASDR), and population attributable fractions (PAFs) of cancers attributable to metabolic factors. Average annual percentage changes (AAPCs) were calculated to assess the changes in the ASDR. The cancer mortality burden was evaluated according to geographic location, SDI quintiles, age, sex, and changes over time.ResultsCancer attributable to metabolic factors contributed 865,440 (95% UI, 447,970-140,590) deaths in 2019, a 167.45% increase over 1990. In the past 30 years, the increase in the number of deaths and ASDR in lower SDI regions have been significantly higher than in higher SDI regions (from high to low SDIs: the changes in death numbers were 108.72%, 135.7%, 288.26%, 375.34%, and 288.26%, and the AAPCs were 0.42%, 0.58%, 1.51%, 2.36%, and 1.96%). Equatorial Guinea (AAPC= 5.71%), Cabo Verde (AAPC=4.54%), and Lesotho (AAPC=4.42%) had the largest increase in ASDR. Large differences were observed in the ASDRs by sex across different SDIs, and the male-to-female ratios of ASDR were 1.42, 1.50, 1.32, 0.93, and 0.86 in 2019. The core population of death in higher SDI regions is the age group of 70 years and above, and the lower SDI regions are concentrated in the age group of 50-69 years. The proportion of premature deaths in lower SDI regions is significantly higher than that in higher SDI regions (from high to low SDIs: 2%, 4%, 7%, 7%, and 9%). Gastrointestinal cancers were the core burden, accounting for 50.11% of cancer deaths attributable to metabolic factors, among which the top three cancers were tracheal, bronchus, and lung cancer, followed by colon and rectum cancer and breast cancer.ConclusionsThe cancer mortality burden attributable to metabolic factors is shifting from higher SDI regions to lower SDI regions. Sex differences show regional heterogeneity, with men having a significantly higher burden than women in higher SDI regions but the opposite is observed in lower SDI regions. Lower SDI regions have a heavier premature death burden. Gastrointestinal cancers are the core of the burden of cancer attributable to metabolic factors.

  15. f

    DataSheet_1_Temporal trends in lung cancer mortality and years of life lost...

    • frontiersin.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaqiong Yan; Yudiyang Ma; Yimeng Li; Xiaoxia Zhang; Yuanyuan Zhao; Niannian Yang; Chuanhua Yu (2023). DataSheet_1_Temporal trends in lung cancer mortality and years of life lost in Wuhan, China, 2010-2019.docx [Dataset]. http://doi.org/10.3389/fonc.2022.1030684.s001
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Yaqiong Yan; Yudiyang Ma; Yimeng Li; Xiaoxia Zhang; Yuanyuan Zhao; Niannian Yang; Chuanhua Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wuhan, China
    Description

    ObjectiveLung cancer is responsible for millions of deaths yearly, and its burden is severe worldwide. This study aimed to investigate the burden of lung cancer in the population of Wuhan based on the surveillance data from 2010 to 2019.MethodsData of this study was obtained from the Mortality Register System established by the Wuhan Center for Disease Control and Prevention. The study systematically analyzed the burden of lung cancer deaths in the population of Wuhan and its 13 administrative regions from 2010 to 2019 via the Joinpoint regression models, Age-Period-Cohort (APC) models, and decomposition analysis.ResultsThis study found the upward and downward trends in the age-standardized mortality rates (ASMRs) and age-standardized years of life lost rates (ASYLLRs) of lung cancer from 2010 to 2019. In Joinpoint regression models, the corresponding estimated annual percentage change (EAPC) were 1.00% and -1.90%, 0.60%, and -3.00%, respectively. In APC models, lung cancer mortality tended to increase with age for both sexes in Wuhan, peaking at the 85-89 age group; The period effects for different populations have started to gradually decline in recent years. In addition, the cohort effects indicated that the risk of lung cancer death was highest among those born in the 1950s-1955s, at 1.08 (males) and 1.01 (females). Among all administrative districts in Wuhan, the ASMR of lung cancer in the Xinzhou District has remained the highest over the study period. In decomposition analysis, both population aging (P

  16. Cancer incidence in European countries in 2022

    • ai-chatbox.pro
    • statista.com
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer incidence in European countries in 2022 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F456786%2Fcancer-incidence-europe%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    European Union
    Description

    In 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
    Lung cancer Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
    Breast cancer Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.

  17. f

    Table 1_Global disease burden of breast cancer attributable to high fasting...

    • frontiersin.figshare.com
    xlsx
    Updated Feb 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jing Zhang; Jiawei He; Yunyan Lu; Tian Lan (2025). Table 1_Global disease burden of breast cancer attributable to high fasting plasma glucose: a comprehensive analysis from the global burden of disease study.xlsx [Dataset]. http://doi.org/10.3389/fendo.2025.1498207.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    Frontiers
    Authors
    Jing Zhang; Jiawei He; Yunyan Lu; Tian Lan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundHigh fasting plasma glucose (HFPG) has been identified as one of the risk factors associated with the development of breast cancer. The worldwide distribution of breast cancer attributable to HFPG was not comprehensively investigated.MethodsWe utilized the data from the Global Burden of Disease Study 2021 to explore HFPG-related breast cancer deaths, disability adjusted life years (DALYs) and corresponding age-standardized rates (ASRs). The average annual percentage change (AAPC) and the estimated annual percentage change (EAPC) were employed to evaluate the temporal trend.ResultsThe global effect of HFPG resulted in nearly 30,570 breast cancer deaths and 819,550 DALYs in 2021, representing an age-standardized deaths rate (ASMR) of 0.66 (95% UI -0.19-1.57) and an age-standardized DALYs rate (ASDR) of 18.05 (95% UI -5.31-42.71). In the regions with low, low-middle, and middle SDI, the ASRs of HFPG-related breast cancer increased significantly over time. The highest ASMR and ASDR were observed in several countries, such as Palau, American Samoa, Cook Islands, Marshall Islands, and United Arab Emirates. There was a positive correlation between ASRs and Socio-Demographic Index (SDI) in countries where SDI was below 0.75. The escalation in death and DALYs was primarily driven by epidemiological change and population growth in low, low-middle, middle SDI regions.ConclusionsSubstantial disparities exist across diverse regions in breast cancer burden attributed to HFPG. It is urgent to regulate glycemic levels, improve healthcare infrastructures, and provide cost-effective care in less developed and developing countries that endure a disproportionately heavier health burden.

  18. Risk of dying from respiratory cancer before the age of 75 MENA 2022, by...

    • ai-chatbox.pro
    • statista.com
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Risk of dying from respiratory cancer before the age of 75 MENA 2022, by country [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F1450495%2Fmena-share-risk-dying-from-respiratory-cancer-before-75-by-country%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Feb 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    MENA
    Description

    In 2022, Turkey had the highest cumulative risk factor for respiratory cancer deaths before the age of 75 by far in the Middle East and North Africa, at 4.4 percent. This was nearly twice the rate of Gaza and the West Bank, which had the second highest risk factor at 2.3 percent.

  19. f

    Table_7_Longitudinal analysis of ovarian cancer death patterns during a...

    • figshare.com
    xlsx
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaopan Li; Mo Zhang; Yichen Chen; Huihui Lv; Yan Du (2023). Table_7_Longitudinal analysis of ovarian cancer death patterns during a rapid transition period (2005-2020) in Shanghai, China: A population-based study.xlsx [Dataset]. http://doi.org/10.3389/fonc.2022.1003297.s007
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    Frontiers
    Authors
    Xiaopan Li; Mo Zhang; Yichen Chen; Huihui Lv; Yan Du
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Shanghai, China
    Description

    ObjectivesIt is important to assess the burden of ovarian cancer related premature death so as to develop appropriate evidence-based care and improve women’s health. This study aimed to characterize the long-term trends in mortality, survival and disease burden of ovarian cancer in Shanghai, China.Materials and MethodsCo-morbidities, crude mortality rate (CMR), age-standardised mortality rate by Segi’s world standard population (ASMRW), years of life lost (YLL), and survival rates were analysed. Temporal trends for the mortality rates and disease burden were analyzed using the Joinpoint Regression Program. Mortality rate increases by demographic and non-demographic factors were estimated by the decomposition method.ResultsA total of 1088 ovarian cancer as underlying cause of deaths were recorded. CMR and ASMRW were 4.82/105 and 2.32/105 person-years, respectively. The YLL was 16372.96 years, and the YLL rate was 72.46/105 person-years. The YLL rate increased only in the age group of 70-79 years (P = 0.017). The survival rates of ovarian cancer patients did not improve during the ten year period (2005-2015). The top co-morbidities were diseases of the respiratory system, digestive system, and circulatory system. The rates of ovarian cancer deaths caused by non-demographic and demographic factors increased by 21.29% (95%CI: 4.01% to 41.44%, P = 0.018) and 25.23% (95%CI: 14.64% to 36.81%, P < 0.001), respectively.ConclusionsPopulation ageing and all cause of death may affect ovarian cancer related deaths in Pudong, Shanghai. The high mortality and the stagnant survival rates suggest the need for more efforts in targeted prevention and treatment of this disease.

  20. f

    Table_4_Longitudinal analysis of ovarian cancer death patterns during a...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaopan Li; Mo Zhang; Yichen Chen; Huihui Lv; Yan Du (2023). Table_4_Longitudinal analysis of ovarian cancer death patterns during a rapid transition period (2005-2020) in Shanghai, China: A population-based study.xlsx [Dataset]. http://doi.org/10.3389/fonc.2022.1003297.s004
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    Frontiers
    Authors
    Xiaopan Li; Mo Zhang; Yichen Chen; Huihui Lv; Yan Du
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Shanghai, China
    Description

    ObjectivesIt is important to assess the burden of ovarian cancer related premature death so as to develop appropriate evidence-based care and improve women’s health. This study aimed to characterize the long-term trends in mortality, survival and disease burden of ovarian cancer in Shanghai, China.Materials and MethodsCo-morbidities, crude mortality rate (CMR), age-standardised mortality rate by Segi’s world standard population (ASMRW), years of life lost (YLL), and survival rates were analysed. Temporal trends for the mortality rates and disease burden were analyzed using the Joinpoint Regression Program. Mortality rate increases by demographic and non-demographic factors were estimated by the decomposition method.ResultsA total of 1088 ovarian cancer as underlying cause of deaths were recorded. CMR and ASMRW were 4.82/105 and 2.32/105 person-years, respectively. The YLL was 16372.96 years, and the YLL rate was 72.46/105 person-years. The YLL rate increased only in the age group of 70-79 years (P = 0.017). The survival rates of ovarian cancer patients did not improve during the ten year period (2005-2015). The top co-morbidities were diseases of the respiratory system, digestive system, and circulatory system. The rates of ovarian cancer deaths caused by non-demographic and demographic factors increased by 21.29% (95%CI: 4.01% to 41.44%, P = 0.018) and 25.23% (95%CI: 14.64% to 36.81%, P < 0.001), respectively.ConclusionsPopulation ageing and all cause of death may affect ovarian cancer related deaths in Pudong, Shanghai. The high mortality and the stagnant survival rates suggest the need for more efforts in targeted prevention and treatment of this disease.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
John Elflein (2024). Cancer death rates in the U.S. in 2022, by state [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F8656%2Fhealth-of-us-states%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
Organization logo

Cancer death rates in the U.S. in 2022, by state

Explore at:
Dataset updated
Sep 16, 2024
Dataset provided by
Statistahttp://statista.com/
Authors
John Elflein
Area covered
United States
Description

In 2022, Utah had the lowest death rate from cancer among all U.S. states with around 116 deaths per 100,000 population. The states with the highest cancer death rates at that time were Mississippi, Kentucky and West Virginia. This statistic shows cancer death rates in the United States in 2022, by state.

Search
Clear search
Close search
Google apps
Main menu