100+ datasets found
  1. Cancer incidence rates in U.S. states in 2022

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cancer incidence rates in U.S. states in 2022 [Dataset]. https://www.statista.com/statistics/248533/us-states-with-highest-cancer-incidence-rates/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, Kentucky reported the highest cancer incidence rate in the United States, with around 512 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2022.

  2. Cancer death rates in the U.S. in 2022, by state

    • statista.com
    Updated Jun 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer death rates in the U.S. in 2022, by state [Dataset]. https://www.statista.com/statistics/248559/us-states-with-lowest-cancer-death-rates/
    Explore at:
    Dataset updated
    Jun 19, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, Utah had the lowest death rate from cancer among all U.S. states with around 116 deaths per 100,000 population. The states with the highest cancer death rates at that time were Mississippi, Kentucky and West Virginia. This statistic shows cancer death rates in the United States in 2022, by state.

  3. Cancer incidence, by selected sites of cancer and sex, three-year average,...

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +4more
    Updated Feb 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2018). Cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas [Dataset]. http://doi.org/10.25318/1310011201-eng
    Explore at:
    Dataset updated
    Feb 14, 2018
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Age standardized rate of cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas.

  4. Cancer incidence in European countries in 2022

    • statista.com
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer incidence in European countries in 2022 [Dataset]. https://www.statista.com/statistics/456786/cancer-incidence-europe/
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Europe, EU
    Description

    In 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
    Lung cancer Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
    Breast cancer Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.

  5. CDC WONDER: Cancer Statistics

    • catalog.data.gov
    • healthdata.gov
    • +6more
    Updated Jul 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-cancer-statistics
    Explore at:
    Dataset updated
    Jul 29, 2025
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  6. Number of new cases and age-standardized rates of primary cancer, by cancer...

    • www150.statcan.gc.ca
    • beta.data.urbandatacentre.ca
    • +2more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Number of new cases and age-standardized rates of primary cancer, by cancer type and sex [Dataset]. http://doi.org/10.25318/1310074701-eng
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    The number of new cases, age-standardized rates and average age at diagnosis of cancers diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Cancer incidence rates are age-standardized using the direct method and the final 2011 Canadian postcensal population structure. Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.

  7. Rate of Canadian new cancer cases by province 2023

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Rate of Canadian new cancer cases by province 2023 [Dataset]. https://www.statista.com/statistics/438129/estimated-incidence-rates-of-all-cancers-in-canada-by-province/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    Nova Scotia has the highest cancer incidence rate of any province in Canada, followed by Newfoundland and Labrador, and Ontario. However, Nunavut has the highest cancer mortality rate of the provinces. In Nunavut there are around *** deaths from cancer per 100,000 population, compared to a rate of *** deaths per 100,000 in Newfoundland and Labrador.

    New cancer cases

    As of 2023, there were around *** new cancer cases in Canada per 100,000 population. The most common types of cancer in Canada include lung and bronchus cancer, breast cancer, and prostate cancer. Breast cancer is the most common type of cancer among women, while prostate cancer is the second most common type among men. Men have slightly higher rates of lung and bronchus cancer and colorectal cancer.

    Cancer mortality

    Lung and bronchus cancers have the highest mortality rate of any cancer in Canada, followed by colorectal and pancreas cancer. Men in Canada have around a **** percent chance of dying as a result of lung and bronchus cancer. The lifetime probability of dying from any cancer type for males in Canada is around ** percent.

  8. Cancer incidence rate in Latin America & the Caribbean 2022, by country

    • statista.com
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cancer incidence rate in Latin America & the Caribbean 2022, by country [Dataset]. https://www.statista.com/statistics/991129/latin-america-cancer-incidence-rate/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Latin America, LAC
    Description

    In 2022, the country with the highest age-standardized cancer incidence rate in Latin America and the Caribbean was Uruguay, with ***** new cases per 100,000 population. Cuba and Argentina followed, with cancer incidence rates of ***** and *****, respectively. In that year, Uruguay was also the country with the highest cancer mortality rate in the region.

  9. Cancer Incidence - Surveillance, Epidemiology, and End Results (SEER)...

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (NCI), National Institutes of Health (NIH) (2025). Cancer Incidence - Surveillance, Epidemiology, and End Results (SEER) Registries Limited-Use [Dataset]. https://catalog.data.gov/dataset/cancer-incidence-surveillance-epidemiology-and-end-results-seer-registries-limited-use
    Explore at:
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    SEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.

  10. Breast cancer incidence rate in the U.S. in 2021, by state

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Breast cancer incidence rate in the U.S. in 2021, by state [Dataset]. https://www.statista.com/statistics/779875/incidence-rate-breast-cancer-us-by-state/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, there were around *** new cases of breast cancer per 100,000 population in the state of Connecticut, making it the state with the highest breast cancer incidence rate that year. This statistic shows the incidence rate of breast cancer in the U.S. in 2021, by state.

  11. f

    Estimation of cancer incidence in the state of São Paulo, Brazil, based on...

    • scielo.figshare.com
    jpeg
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolina Terra de Moraes Luizaga; Cassia Maria Buchalla (2023). Estimation of cancer incidence in the state of São Paulo, Brazil, based on real data [Dataset]. http://doi.org/10.6084/m9.figshare.22188010.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    SciELO journals
    Authors
    Carolina Terra de Moraes Luizaga; Cassia Maria Buchalla
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil, State of São Paulo
    Description

    This study aims to evaluate the feasibility of applying a method of estimating the incidence of cancer to regions of the state of São Paulo, Brazil, from real data (not estimated) and retrospectively comparing the results obtained with the official estimates. A method based on mortality and on the incidence to mortality (I/M) ration was used according to sex, age, and tumor location. In the I/M numerator, new cases of cancer were used from the population records of Jaú and São Paulo from 2006-2010; in the denominator, deaths from 2006-2010 in the respective areas, extracted from the national mortality system. The estimates resulted from the multiplication of I/M by the number of cancer deaths in 2010 for each region. Population data from the 2010 Demographic Census were used to estimate incidence rates. For the adjustment by age, the world standard population was used. We calculated the relative differences between the gross incidence rates estimated in this study and the official ones. Age-adjusted cancer incidence rates were 260.9/100,000 for men and 216.6/100,000 for women. Prostate cancer was the most common in males, whereas breast cancer was most common in females. Differences between the rates of this study and the official rates were 3.3% and 1.5% for each sex. The estimated incidence was compatible with the officially presented state profile, indicating that the application of real data did not alter the morbidity profile, while it did indicate different risk magnitudes. Despite the over-representativeness of the cancer registry with greater population coverage, the selected method proved feasible to point out different patterns within the state.

  12. Cancer incidence, by selected sites of cancer and sex, three-year average,...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Feb 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2018). Cancer incidence, by selected sites of cancer and sex, three-year average, Canada, provinces, territories and health regions (2015 boundaries) [Dataset]. http://doi.org/10.25318/1310010901-eng
    Explore at:
    Dataset updated
    Feb 14, 2018
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 30810 series, with data for years 2001/2003 - 2013/2015 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (158 items: Canada; Newfoundland and Labrador; Eastern Regional Health Authority, Newfoundland and Labrador; Central Regional Health Authority, Newfoundland and Labrador; ...); Sex (3 items: Both sexes; Males; Females); Selected sites of cancer (ICD-O-3) (5 items: All invasive primary cancer sites (including in situ bladder); Colon, rectum and rectosigmoid junction cancer; Bronchus and lung cancer; Female breast cancer; ...); Characteristics (13 items: Number of new cancer cases; Cancer incidence (rate per 100,000 population); Low 95% confidence interval, cancer incidence (rate per 100,000 population); High 95% confidence interval, cancer incidence (rate per 100,000 population); ...).

  13. f

    DataSheet1_Decreasing incidence and mortality of lung cancer in Hungary...

    • figshare.com
    zip
    Updated Jun 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gabriella Gálffy; Géza Tamás Szabó; Lilla Tamási; Veronika Müller; Judit Moldvay; Veronika Sárosi; Anna Kerpel-Fronius; Tamás Kardos; Edit Csada; Zsolt Pápai-Székely; Zoltán Szász; Zsolt Király; Gábor Hódi; Zsuzsanna Kovács; Éva Balogh; Krisztina Andrea Kovács; Miklós Darida; Viktória Buga; György Rokszin; Zsolt Abonyi-Tóth; Zoltán Kiss; Zoltán Vokó; Krisztina Bogos (2024). DataSheet1_Decreasing incidence and mortality of lung cancer in Hungary between 2011 and 2021 revealed by robust estimates reconciling multiple data sources.ZIP [Dataset]. http://doi.org/10.3389/pore.2024.1611754.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 3, 2024
    Dataset provided by
    Frontiers
    Authors
    Gabriella Gálffy; Géza Tamás Szabó; Lilla Tamási; Veronika Müller; Judit Moldvay; Veronika Sárosi; Anna Kerpel-Fronius; Tamás Kardos; Edit Csada; Zsolt Pápai-Székely; Zoltán Szász; Zsolt Király; Gábor Hódi; Zsuzsanna Kovács; Éva Balogh; Krisztina Andrea Kovács; Miklós Darida; Viktória Buga; György Rokszin; Zsolt Abonyi-Tóth; Zoltán Kiss; Zoltán Vokó; Krisztina Bogos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hungary
    Description

    ObjectiveHungary has repeatedly been shown to have the highest cancer-related mortality and incidence in Europe. Despite lung cancer being the most abundant malignant diagnosis in Hungary, numerous concerns have been raised recently regarding the bias inherent to reported incidence estimates. Re-analysis of reimbursement claims has been suggested previously by our group as an alternative approach, offering revised figures of lung cancer incidence between 2011 and 2016. Leveraging on this methodology, we aimed at updating Hungarian lung cancer incidence estimates with an additional 5 years (2017–2021), including years affected by the COVID-19 pandemic. Additionally, we also attempted to improve the robustness of estimates by taking additional characteristics of the patient pathway into account.MethodsLung cancer patients between 2011 and 2021 were identified based on reimbursement-associated ICD-10 codes, histology codes and time patterns. Multiple query architectures were tested for sensitivity and compared to official estimates of the Hungarian National Cancer Registry (HNCR). Epidemiological trends were estimated by Poisson-regression, corrected for age and sex.ResultsA total of 89,948 lung cancer patients diagnosed in Hungary between 2011 and 2021 have been identified by our study. In 2019 alone, 7,887 patients were diagnosed according to our optimized query. ESP2013 standardized rate was estimated between 92.5/100,000 (2011) and 78.4/100,000 (2019). In 2019, standardized incidence was 106.8/100,000 for men and 59.7/100,000 for women. Up until the COVID-19 pandemic, lung cancer incidence was decreasing by 3.18% (2.1%–4.3%) yearly in men, while there was no significant decrease in women. Young age groups (40–49 and 50–59) featured the largest improvement, but women aged 60–79 are at an increasing risk for developing lung cancer. The COVID-19 pandemic resulted in a statistically significant decrease in lung cancer incidence, especially in the 50–59 age group (both sexes).ConclusionOur results show that using an optimized approach, re-analysis of reimbursement claims yields robust estimates of lung cancer incidence. According to this approach, the incidence rate of male lung cancer is declining in Hungary, in concordance with the trend observed for lung cancer mortality. Among women aged 60–79, the incidence of lung cancer has risen, requiring more attention in the near future.

  14. M

    Breast Cancer Statistics 2025 By Types, Risks, Ratio

    • media.market.us
    Updated Jan 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2025). Breast Cancer Statistics 2025 By Types, Risks, Ratio [Dataset]. https://media.market.us/breast-cancer-statistics/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Description

    Editor’s Choice

    • Global Breast Cancer Market size is expected to be worth around USD 49.2 Bn by 2032 from USD 19.8 Bn in 2022, growing at a CAGR of 9.8% during the forecast period from 2022 to 2032.
    • Breast cancer is the most common cancer among women worldwide. In 2020, there were about 2.3 million new cases of breast cancer diagnosed globally.
    • Breast cancer is the leading cause of cancer-related deaths in women. In 2020, it was responsible for approximately 685,000 deaths worldwide.
    • The survival rate of breast cancer has improved over the years. In the United States, the overall five-year survival rate of breast cancer is around 90%.
    • The American Cancer Society recommends annual mammograms starting at age 40 for women at average risk.
    • Although rare, breast cancer also occurs in men. Less than 1% of breast cancer cases are diagnosed in males.

    (Source: WHO, American Cancer Society)

    https://market.us/wp-content/uploads/2023/04/Breast-Cancer-Market-Value.jpg" alt="">

  15. a

    5 Year Male Cancer Incidence MSSA

    • uscssi.hub.arcgis.com
    • usc-geohealth-hub-uscssi.hub.arcgis.com
    Updated Nov 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). 5 Year Male Cancer Incidence MSSA [Dataset]. https://uscssi.hub.arcgis.com/maps/USCSSI::5-year-male-cancer-incidence-mssa
    Explore at:
    Dataset updated
    Nov 10, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.

    Cancer incidence rates

    Incidence rates were calculated using case counts from the California Cancer Registry. Population data from 2010 Census and SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators. Yearly SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators for 5-year incidence rates (2013-2017)According to California Department of Public Health guidelines, cancer incidence rates cannot be reported if based on <15 cancer cases and/or a population <10,000 to ensure confidentiality and stable statistical rates.Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity

  16. c

    The global Cancer Diagnosis market size will be USD 109614.5 million in...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The global Cancer Diagnosis market size will be USD 109614.5 million in 2024. [Dataset]. https://www.cognitivemarketresearch.com/cancer-diagnosis-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Cancer Diagnosis market size will be USD 109614.5 million in 2024. It will expand at a compound annual growth rate (CAGR) of 6.50% from 2024 to 2031.

    North America held the major market share for more than 40% of the global revenue with a market size of USD 43845.80 million in 2024 and will grow at a compound annual growth rate (CAGR) of 4.7% from 2024 to 2031.
    Europe accounted for a market share of over 30% of the global revenue with a market size of USD 32884.35 million.
    Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 25211.34 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.5% from 2024 to 2031.
    Latin America had a market share of more than 5% of the global revenue with a market size of USD 5480.73 million in 2024 and will grow at a compound annual growth rate (CAGR) of 5.9% from 2024 to 2031.
    Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 2192.29 million in 2024 and will grow at a compound annual growth rate (CAGR) of 6.2% from 2024 to 2031.
    The consumables category is the fastest growing segment of the Cancer Diagnosis industry
    

    Market Dynamics of Cancer Diagnosis Market

    Key Drivers for Cancer Diagnosis Market

    Increasing Rate of Cancer Diagnostics to Boost Market Growth

    The rising global incidence of cancer, which affects millions of people a year, is a primary driver of the need for diagnostic testing. Numerous factors contribute to this tendency, such as the aging population, which increases the risk of developing some cancers in older adults. Changes in lifestyle, including poor eating habits, inactivity, and increased use of alcohol and tobacco, have also contributed to an increase in cancer incidence. Environmental factors, such as exposure to chemicals and hazardous compounds, exacerbate the problem and increase the risk of developing cancer. Therefore, as early detection and diagnosis are becoming more and more important to patients and healthcare professionals, effective cancer diagnostics are essential. The market for cancer diagnostics is expanding as a result of the increased emphasis on prompt and precise cancer detection, which highlights the value of novel diagnostic procedures. For Instance, in 2023, the Pan American Health Organization (PAHO) projects that there will be 20 million new cases and 10 million deaths, and by 2040, nearly 30 million cases will be reported annually.

    Innovations in Diagnostic Technologies to Drive Market Growth

    The market for cancer diagnostics is expanding as a result of advancements in diagnostic technologies that have greatly improved the precision and effectiveness of cancer detection. For example, non-invasive cancer biomarker identification in physiological fluids is made possible by liquid biopsies, which offer vital insights into tumor dynamics and therapy response. In a similar vein, molecular diagnostics has transformed the detection of particular genetic abnormalities and changes linked to different types of cancer, allowing for more individualized treatment strategies. High-resolution images of tumors are provided by advanced imaging methods like MRI and PET scans, which help with accurate staging and localization. Better patient outcomes result from these technical developments because they increase overall diagnosis accuracy and enable early intervention. The ongoing development of these cutting-edge diagnostic instruments is propelling market expansion and revolutionizing cancer treatment.

    Restraint Factor for the Cancer Diagnosis Market

    The High Price of Cutting-Edge Diagnostic Technology Will Limit Market Growth

    The market for cancer diagnostics is severely hampered by the high price of sophisticated diagnostic tools. Advanced diagnostic instruments, such as molecular tests and imaging technologies, are frequently expensive, which limits healthcare facilities' access to them, especially in settings with limited resources. These institutions' capacity to provide thorough cancer screening and diagnostic services is restricted by this financial barrier, which eventually affects patient outcomes. These financial difficulties are further exacerbated by the costs associated with the development, research, and regulatory approval of new diagnostic instruments. Companies have to spend a lot of money to comply ...

  17. f

    Risk of cancer in patients with MS.

    • plos.figshare.com
    xls
    Updated Oct 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amirhossein Nafari; Saeed Vaheb; Alireza Afshari-Safavi; Zahra Ravankhah; Fotooheh Teimouri; Vahid Shaygannejad; Omid Mirmosayyeb (2024). Risk of cancer in patients with MS. [Dataset]. http://doi.org/10.1371/journal.pone.0312707.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Amirhossein Nafari; Saeed Vaheb; Alireza Afshari-Safavi; Zahra Ravankhah; Fotooheh Teimouri; Vahid Shaygannejad; Omid Mirmosayyeb
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundMultiple sclerosis (MS) and cancer present substantial global health challenges. Understanding cancer patterns among people with MS (PwMS) is crucial due to potential variations across demographics and geographic regions. Isfahan province in Iran, known for its high MS incidence ratio, offers a significant population for comprehensive studies on MS. In this study, we aim to investigate the association between risk of cancer and MS.MethodData on PwMS were collected utilizing the National Multiple Sclerosis Registry System of Iran (NMSRI), with diagnoses confirmed using McDonald criteria by neurologists specialized in MS. Cancer incidence was investigated using the Iranian National Population-Based Cancer Registry (INPCR) data, collected following international protocols. Descriptive statistics and regression analyses were employed to assess factors associated with cancer and mortality risks among PwMS. Survival analysis was conducted using Kaplan-Meier curves.ResultsOut of 10,049 PwMS, 123 were diagnosed with cancer, with an mean age at the time of cancer diagnosis being 40.41 years and a mean MS duration of 6.76 years. The majority had relapsing-remitting MS (81.2%), and Interferon-β was the most common disease-modifying therapy (DMT) (42.4%). Cancer incidence was 125.6 per 100,000 person-years, peaking at ages 60–64 (677.9 per 100,000 person-years). Receiving monoclonal antibody medications and older age were significantly associated with higher cancer risk (OR:1.542 (1.009–2.357), OR:1.033 (1.015–1.051), respectively). Female breast cancer had the highest incidence ratio among PwMS (40.17 per 100,000 person-years), followed by thyroid (18.38 per 100,000 person-years) and digestive system cancers (17.36 per 100,000 person-years). Breast cancer was the predominant cancer in women, while digestive system cancers were most common among men. Being male and having longer MS duration were linked to higher cancer mortality risk (HR: 2.683, 1.087, respectively).ConclusionCancer incidence among 10,049 people with multiple sclerosis was significant, especially in older individuals, with breast cancer being the most common. Male gender and longer MS duration were linked to higher cancer mortality risk.

  18. U.S. rate of new alcohol-associated cancers in 2022, by state

    • statista.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. rate of new alcohol-associated cancers in 2022, by state [Dataset]. https://www.statista.com/statistics/950136/alcohol-cancer-rate-us-by-state/
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, Kentucky had the highest incidence of alcohol-associated cancer in the United States, with a rate of 145 per 100,000 people. This graph shows the rate of alcohol-related cancers per 100,000 people in the United States in 2022, by state.

  19. S

    Comprehensive analysis of the disease burden of breast cancer in the Chinese...

    • scidb.cn
    Updated Feb 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan.Zhu; Lu.Chen; Juan.Gu; Xu.Li; Ming-Xia.Luo; Cheng.He; Yu-He.Wang (2024). Comprehensive analysis of the disease burden of breast cancer in the Chinese population based on The Annual Report of the Chinese Tumour Registry and Global Burden of Disease data [Dataset]. http://doi.org/10.57760/sciencedb.o00130.01691
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 5, 2024
    Dataset provided by
    Science Data Bank
    Authors
    Yan.Zhu; Lu.Chen; Juan.Gu; Xu.Li; Ming-Xia.Luo; Cheng.He; Yu-He.Wang
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    BACKGROUND Comprehensive analyses of statistical data on breast cancer incidence, mortality, and associated risk factors are of great value for decision-making related to reducing the disease burden of breast cancer. METHODS: Based on data from the Annual Report of China Tumour Registry and the Global Burden of Disease (GBD), we conducted summary and trend analyses of incidence and mortality rates of breast cancer in Chinese women from 2014 to 2018 for urban and rural areas in the whole, eastern, central, and western parts of the country, and projected the incidence and mortality rates of breast cancer for 2019 in comparison with the GBD 2019 estimates. And the comparative risk assessment framework estimated risk factors contributing to breast cancer deaths and disability-adjusted life years (DALYs) from GBD. RESULTS: The Annual Report of the Chinese Tumour Registry showed that showed that the mortality rate of breast cancer declined and the incidence rate remained largely unchanged from 2014 to 2018. There was a significant increasing trend in incidence rates among urban and rural women in eastern China and rural women in central China, whereas there was a significant decreasing trend in mortality rates among rural women in China. The two data sources have some differences in their predictions of breast cancer in China in 2019. The GBD data estimated the age-standard DALYs rates of high body-mass index, high fasting plasma glucose and diet high in red meat, which are the top three risk factors attributable to breast cancer in Chinese women, to be 29.99/100,000, 13.66/100,000 and 13.44/100,000, respectively. Conclusion: The trend of breast cancer incidence and mortality rates shown in the Annual Report of China Tumour Registry indicates that China has achieved remarkable results in reducing the burden of breast cancer, but there is still a need to further improve breast cancer screening and early diagnosis and treatment, and to improve the system of primary prevention. The GBD database provides risk factors for breast cancer in the world, Asia, and China, and lays the foundation for research on effective measures to reduce the burden of breast cancer.

  20. a

    AIHW - Cancer Incidence and Mortality Across Regions (CIMAR) - Males...

    • data.aurin.org.au
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). AIHW - Cancer Incidence and Mortality Across Regions (CIMAR) - Males Mortality (GCCSA) 2009-2013 - Dataset - AURIN [Dataset]. https://data.aurin.org.au/dataset/au-govt-aihw-aihw-cimar-mortality-males-gccsa-2009-13-gccsa
    Explore at:
    Dataset updated
    Mar 6, 2025
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This dataset presents the footprint of male cancer mortality statistics in Australia for all cancers combined and the 11 top cancer groupings (bladder, colorectal, head and neck, kidney, leukaemia, lung, lymphoma, melanoma of the skin, pancreas, prostate and stomach) and their respective ICD-10 codes. The data spans the years 2009-2013 and is aggregated to Greater Capital City Statistical Areas (GCCSA) from the 2011 Australian Statistical Geography Standard (ASGS). Mortality data refer to the number of deaths due to cancer in a given time period. Cancer deaths data are sourced from the Australian Institute of Health and Welfare (AIHW) 2013 National Mortality Database (NMD). For further information about this dataset, please visit: Australian Institute of Health and Welfare - Cancer Incidence and Mortality Across Regions (CIMAR) books. Australian Institute of Health and Welfare - 2013 National Mortality Database. Please note: AURIN has spatially enabled the original data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cancer incidence rates in U.S. states in 2022 [Dataset]. https://www.statista.com/statistics/248533/us-states-with-highest-cancer-incidence-rates/
Organization logo

Cancer incidence rates in U.S. states in 2022

Explore at:
Dataset updated
Jun 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
United States
Description

In 2022, Kentucky reported the highest cancer incidence rate in the United States, with around 512 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2022.

Search
Clear search
Close search
Google apps
Main menu