In 2022, Kentucky reported the highest cancer incidence rate in the United States, with around 512 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2022.
In 2022, Utah had the lowest death rate from cancer among all U.S. states with around 116 deaths per 100,000 population. The states with the highest cancer death rates at that time were Mississippi, Kentucky and West Virginia. This statistic shows cancer death rates in the United States in 2022, by state.
Age standardized rate of cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas.
In 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
Lung cancer
Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
Breast cancer
Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.
The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).
The number of new cases, age-standardized rates and average age at diagnosis of cancers diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Cancer incidence rates are age-standardized using the direct method and the final 2011 Canadian postcensal population structure. Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Nova Scotia has the highest cancer incidence rate of any province in Canada, followed by Newfoundland and Labrador, and Ontario. However, Nunavut has the highest cancer mortality rate of the provinces. In Nunavut there are around *** deaths from cancer per 100,000 population, compared to a rate of *** deaths per 100,000 in Newfoundland and Labrador.
New cancer cases
As of 2023, there were around *** new cancer cases in Canada per 100,000 population. The most common types of cancer in Canada include lung and bronchus cancer, breast cancer, and prostate cancer. Breast cancer is the most common type of cancer among women, while prostate cancer is the second most common type among men. Men have slightly higher rates of lung and bronchus cancer and colorectal cancer.
Cancer mortality
Lung and bronchus cancers have the highest mortality rate of any cancer in Canada, followed by colorectal and pancreas cancer. Men in Canada have around a **** percent chance of dying as a result of lung and bronchus cancer. The lifetime probability of dying from any cancer type for males in Canada is around ** percent.
In 2022, the country with the highest age-standardized cancer incidence rate in Latin America and the Caribbean was Uruguay, with ***** new cases per 100,000 population. Cuba and Argentina followed, with cancer incidence rates of ***** and *****, respectively. In that year, Uruguay was also the country with the highest cancer mortality rate in the region.
SEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.
In 2021, there were around *** new cases of breast cancer per 100,000 population in the state of Connecticut, making it the state with the highest breast cancer incidence rate that year. This statistic shows the incidence rate of breast cancer in the U.S. in 2021, by state.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study aims to evaluate the feasibility of applying a method of estimating the incidence of cancer to regions of the state of São Paulo, Brazil, from real data (not estimated) and retrospectively comparing the results obtained with the official estimates. A method based on mortality and on the incidence to mortality (I/M) ration was used according to sex, age, and tumor location. In the I/M numerator, new cases of cancer were used from the population records of Jaú and São Paulo from 2006-2010; in the denominator, deaths from 2006-2010 in the respective areas, extracted from the national mortality system. The estimates resulted from the multiplication of I/M by the number of cancer deaths in 2010 for each region. Population data from the 2010 Demographic Census were used to estimate incidence rates. For the adjustment by age, the world standard population was used. We calculated the relative differences between the gross incidence rates estimated in this study and the official ones. Age-adjusted cancer incidence rates were 260.9/100,000 for men and 216.6/100,000 for women. Prostate cancer was the most common in males, whereas breast cancer was most common in females. Differences between the rates of this study and the official rates were 3.3% and 1.5% for each sex. The estimated incidence was compatible with the officially presented state profile, indicating that the application of real data did not alter the morbidity profile, while it did indicate different risk magnitudes. Despite the over-representativeness of the cancer registry with greater population coverage, the selected method proved feasible to point out different patterns within the state.
This table contains 30810 series, with data for years 2001/2003 - 2013/2015 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (158 items: Canada; Newfoundland and Labrador; Eastern Regional Health Authority, Newfoundland and Labrador; Central Regional Health Authority, Newfoundland and Labrador; ...); Sex (3 items: Both sexes; Males; Females); Selected sites of cancer (ICD-O-3) (5 items: All invasive primary cancer sites (including in situ bladder); Colon, rectum and rectosigmoid junction cancer; Bronchus and lung cancer; Female breast cancer; ...); Characteristics (13 items: Number of new cancer cases; Cancer incidence (rate per 100,000 population); Low 95% confidence interval, cancer incidence (rate per 100,000 population); High 95% confidence interval, cancer incidence (rate per 100,000 population); ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveHungary has repeatedly been shown to have the highest cancer-related mortality and incidence in Europe. Despite lung cancer being the most abundant malignant diagnosis in Hungary, numerous concerns have been raised recently regarding the bias inherent to reported incidence estimates. Re-analysis of reimbursement claims has been suggested previously by our group as an alternative approach, offering revised figures of lung cancer incidence between 2011 and 2016. Leveraging on this methodology, we aimed at updating Hungarian lung cancer incidence estimates with an additional 5 years (2017–2021), including years affected by the COVID-19 pandemic. Additionally, we also attempted to improve the robustness of estimates by taking additional characteristics of the patient pathway into account.MethodsLung cancer patients between 2011 and 2021 were identified based on reimbursement-associated ICD-10 codes, histology codes and time patterns. Multiple query architectures were tested for sensitivity and compared to official estimates of the Hungarian National Cancer Registry (HNCR). Epidemiological trends were estimated by Poisson-regression, corrected for age and sex.ResultsA total of 89,948 lung cancer patients diagnosed in Hungary between 2011 and 2021 have been identified by our study. In 2019 alone, 7,887 patients were diagnosed according to our optimized query. ESP2013 standardized rate was estimated between 92.5/100,000 (2011) and 78.4/100,000 (2019). In 2019, standardized incidence was 106.8/100,000 for men and 59.7/100,000 for women. Up until the COVID-19 pandemic, lung cancer incidence was decreasing by 3.18% (2.1%–4.3%) yearly in men, while there was no significant decrease in women. Young age groups (40–49 and 50–59) featured the largest improvement, but women aged 60–79 are at an increasing risk for developing lung cancer. The COVID-19 pandemic resulted in a statistically significant decrease in lung cancer incidence, especially in the 50–59 age group (both sexes).ConclusionOur results show that using an optimized approach, re-analysis of reimbursement claims yields robust estimates of lung cancer incidence. According to this approach, the incidence rate of male lung cancer is declining in Hungary, in concordance with the trend observed for lung cancer mortality. Among women aged 60–79, the incidence of lung cancer has risen, requiring more attention in the near future.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
(Source: WHO, American Cancer Society)
Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global Cancer Diagnosis market size will be USD 109614.5 million in 2024. It will expand at a compound annual growth rate (CAGR) of 6.50% from 2024 to 2031.
North America held the major market share for more than 40% of the global revenue with a market size of USD 43845.80 million in 2024 and will grow at a compound annual growth rate (CAGR) of 4.7% from 2024 to 2031.
Europe accounted for a market share of over 30% of the global revenue with a market size of USD 32884.35 million.
Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 25211.34 million in 2024 and will grow at a compound annual growth rate (CAGR) of 8.5% from 2024 to 2031.
Latin America had a market share of more than 5% of the global revenue with a market size of USD 5480.73 million in 2024 and will grow at a compound annual growth rate (CAGR) of 5.9% from 2024 to 2031.
Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 2192.29 million in 2024 and will grow at a compound annual growth rate (CAGR) of 6.2% from 2024 to 2031.
The consumables category is the fastest growing segment of the Cancer Diagnosis industry
Market Dynamics of Cancer Diagnosis Market
Key Drivers for Cancer Diagnosis Market
Increasing Rate of Cancer Diagnostics to Boost Market Growth
The rising global incidence of cancer, which affects millions of people a year, is a primary driver of the need for diagnostic testing. Numerous factors contribute to this tendency, such as the aging population, which increases the risk of developing some cancers in older adults. Changes in lifestyle, including poor eating habits, inactivity, and increased use of alcohol and tobacco, have also contributed to an increase in cancer incidence. Environmental factors, such as exposure to chemicals and hazardous compounds, exacerbate the problem and increase the risk of developing cancer. Therefore, as early detection and diagnosis are becoming more and more important to patients and healthcare professionals, effective cancer diagnostics are essential. The market for cancer diagnostics is expanding as a result of the increased emphasis on prompt and precise cancer detection, which highlights the value of novel diagnostic procedures. For Instance, in 2023, the Pan American Health Organization (PAHO) projects that there will be 20 million new cases and 10 million deaths, and by 2040, nearly 30 million cases will be reported annually.
Innovations in Diagnostic Technologies to Drive Market Growth
The market for cancer diagnostics is expanding as a result of advancements in diagnostic technologies that have greatly improved the precision and effectiveness of cancer detection. For example, non-invasive cancer biomarker identification in physiological fluids is made possible by liquid biopsies, which offer vital insights into tumor dynamics and therapy response. In a similar vein, molecular diagnostics has transformed the detection of particular genetic abnormalities and changes linked to different types of cancer, allowing for more individualized treatment strategies. High-resolution images of tumors are provided by advanced imaging methods like MRI and PET scans, which help with accurate staging and localization. Better patient outcomes result from these technical developments because they increase overall diagnosis accuracy and enable early intervention. The ongoing development of these cutting-edge diagnostic instruments is propelling market expansion and revolutionizing cancer treatment.
Restraint Factor for the Cancer Diagnosis Market
The High Price of Cutting-Edge Diagnostic Technology Will Limit Market Growth
The market for cancer diagnostics is severely hampered by the high price of sophisticated diagnostic tools. Advanced diagnostic instruments, such as molecular tests and imaging technologies, are frequently expensive, which limits healthcare facilities' access to them, especially in settings with limited resources. These institutions' capacity to provide thorough cancer screening and diagnostic services is restricted by this financial barrier, which eventually affects patient outcomes. These financial difficulties are further exacerbated by the costs associated with the development, research, and regulatory approval of new diagnostic instruments. Companies have to spend a lot of money to comply ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMultiple sclerosis (MS) and cancer present substantial global health challenges. Understanding cancer patterns among people with MS (PwMS) is crucial due to potential variations across demographics and geographic regions. Isfahan province in Iran, known for its high MS incidence ratio, offers a significant population for comprehensive studies on MS. In this study, we aim to investigate the association between risk of cancer and MS.MethodData on PwMS were collected utilizing the National Multiple Sclerosis Registry System of Iran (NMSRI), with diagnoses confirmed using McDonald criteria by neurologists specialized in MS. Cancer incidence was investigated using the Iranian National Population-Based Cancer Registry (INPCR) data, collected following international protocols. Descriptive statistics and regression analyses were employed to assess factors associated with cancer and mortality risks among PwMS. Survival analysis was conducted using Kaplan-Meier curves.ResultsOut of 10,049 PwMS, 123 were diagnosed with cancer, with an mean age at the time of cancer diagnosis being 40.41 years and a mean MS duration of 6.76 years. The majority had relapsing-remitting MS (81.2%), and Interferon-β was the most common disease-modifying therapy (DMT) (42.4%). Cancer incidence was 125.6 per 100,000 person-years, peaking at ages 60–64 (677.9 per 100,000 person-years). Receiving monoclonal antibody medications and older age were significantly associated with higher cancer risk (OR:1.542 (1.009–2.357), OR:1.033 (1.015–1.051), respectively). Female breast cancer had the highest incidence ratio among PwMS (40.17 per 100,000 person-years), followed by thyroid (18.38 per 100,000 person-years) and digestive system cancers (17.36 per 100,000 person-years). Breast cancer was the predominant cancer in women, while digestive system cancers were most common among men. Being male and having longer MS duration were linked to higher cancer mortality risk (HR: 2.683, 1.087, respectively).ConclusionCancer incidence among 10,049 people with multiple sclerosis was significant, especially in older individuals, with breast cancer being the most common. Male gender and longer MS duration were linked to higher cancer mortality risk.
In 2022, Kentucky had the highest incidence of alcohol-associated cancer in the United States, with a rate of 145 per 100,000 people. This graph shows the rate of alcohol-related cancers per 100,000 people in the United States in 2022, by state.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
BACKGROUND Comprehensive analyses of statistical data on breast cancer incidence, mortality, and associated risk factors are of great value for decision-making related to reducing the disease burden of breast cancer. METHODS: Based on data from the Annual Report of China Tumour Registry and the Global Burden of Disease (GBD), we conducted summary and trend analyses of incidence and mortality rates of breast cancer in Chinese women from 2014 to 2018 for urban and rural areas in the whole, eastern, central, and western parts of the country, and projected the incidence and mortality rates of breast cancer for 2019 in comparison with the GBD 2019 estimates. And the comparative risk assessment framework estimated risk factors contributing to breast cancer deaths and disability-adjusted life years (DALYs) from GBD. RESULTS: The Annual Report of the Chinese Tumour Registry showed that showed that the mortality rate of breast cancer declined and the incidence rate remained largely unchanged from 2014 to 2018. There was a significant increasing trend in incidence rates among urban and rural women in eastern China and rural women in central China, whereas there was a significant decreasing trend in mortality rates among rural women in China. The two data sources have some differences in their predictions of breast cancer in China in 2019. The GBD data estimated the age-standard DALYs rates of high body-mass index, high fasting plasma glucose and diet high in red meat, which are the top three risk factors attributable to breast cancer in Chinese women, to be 29.99/100,000, 13.66/100,000 and 13.44/100,000, respectively. Conclusion: The trend of breast cancer incidence and mortality rates shown in the Annual Report of China Tumour Registry indicates that China has achieved remarkable results in reducing the burden of breast cancer, but there is still a need to further improve breast cancer screening and early diagnosis and treatment, and to improve the system of primary prevention. The GBD database provides risk factors for breast cancer in the world, Asia, and China, and lays the foundation for research on effective measures to reduce the burden of breast cancer.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of male cancer mortality statistics in Australia for all cancers combined and the 11 top cancer groupings (bladder, colorectal, head and neck, kidney, leukaemia, lung, lymphoma, melanoma of the skin, pancreas, prostate and stomach) and their respective ICD-10 codes. The data spans the years 2009-2013 and is aggregated to Greater Capital City Statistical Areas (GCCSA) from the 2011 Australian Statistical Geography Standard (ASGS). Mortality data refer to the number of deaths due to cancer in a given time period. Cancer deaths data are sourced from the Australian Institute of Health and Welfare (AIHW) 2013 National Mortality Database (NMD). For further information about this dataset, please visit: Australian Institute of Health and Welfare - Cancer Incidence and Mortality Across Regions (CIMAR) books. Australian Institute of Health and Welfare - 2013 National Mortality Database. Please note: AURIN has spatially enabled the original data.
In 2022, Kentucky reported the highest cancer incidence rate in the United States, with around 512 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2022.