The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits ***** meters above sea level, and is more than 1,000 meters higher than the second-ranked city, Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's largest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of ***** meters.
This statistic displays the countries with the greatest range between their highest and lowest elevation points. China and Nepal share the highest elevation point worldwide, which ascends to an amount of 8848 meters above sea level. Near the city Turpan Pendi, Xinjiang, China's elevation reaches *** meters below sea level.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and warning efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and warning efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS 84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.
At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.
Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.
The High Accuracy Elevation Data Project collected elevation data (meters) on a 400 meter topographic grid with a vertical accuracy of +/- 15 centimeters to define the topography in South Florida. The data are referenced to the horizontal datum North American Datum 1983 (NAD 83) and the vertical datum North American Vertical Datum 1988 (NAVD 88). In some areas, the surveying was accomplished using airboats. Because access was a logistical problem with airboats, the USGS developed a helicopter-based instrument known as the Airborne Height Finder (AHF). All subsequent data collection used the AHF. Data were collected from the Loxahatchee National Wildlife Refuge, south through the Water Conservation Areas (1A, 2A, 2B, 3A, and 3B), Big Cypress National Park, the Everglades National Park, to the Florida Bay. The data are available for the areas shown on the USGS High Accuracy Elevation Data graphic at http://sofia.usgs.gov/exchange/desmond/desmondelev.html . The work was performed for Everglades ecosystem restoration purposes.
The data are from regional topographic surveys to collect and provide elevation data to parameterize hydrologic and ecological numerical simulation models that are being developed for ecosystem restoration activities. Surveying services were also rendered to provide vertical reference points for numerous water level gauges. Modeling of sheet flow and water surface levels in the wetlands of South Florida is very sensitive to changes in elevation due to the expansive and extremely low relief terrain. Hydrologists determined minimum vertical accuracy requirements for the elevation data for use as input to hydrologic models. As a result, elevation data with a vertical accuracy specification of +/-15 centimeters (cm) relative to the North American Vertical Datum of 1988 (NAVD88) were collected in critical areas using state-of-the-art differential global positioning system (GPS) technology and data processing techniques.
[From GeoData Center Home Page descriptions, "http://www.gi.alaska.edu/alaska-satellite-facility/geodata-center"]
The GeoData Center is the browse facility for the state copy of the AHAP
collection, which covers approximately 95% of the State of Alaska in 1:60,000
color infrared (CIR) and 1:120,000 black and white (B&W) photography. The data
reside in 10" film format. Approximately 70,000 frames of photography were
acquired between 1978 and 1986.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and warning efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to a variety of vertical datums and horizontal datum of World Geodetic System of 1984 (WGS84). Cell size for the DEMs ranges from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).
At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
The U.S. Geological Survey (USGS) is coordinating the aquisition of high accuracy elevation data. Three formats of the data are available for each data set: .cor files which contain complete lists of Global Positioning System point files, .asc files which are the same as the .cor files but have been reformatted to process into ARC/INFO coverages, and .e00 files which are the ARC/INFO coverages. The files are available in the same 7.5- by 7.5-minute coverages as USGS quadrangles. The elevation data is collected on a 400 by 400 meter grid. The elevations are referenced to the horizontal North American Datum of 1983 (NAD83) and vertical North American Vertical Datum of 1988 (NAVD88).
This project is performing regional topographic surveys to collect and provide elevation data to parameterize hydrologic and ecological numerical simulation models that are being developed for ecosystem restoration activities. Surveying services are also being rendered to provide vertical reference points for numerous water level gauges.
Modeling of sheet flow and water surface levels in the wetlands of South Florida is very sensitive to changes in elevation due to the expansive and extremely low relief terrain. Hydrologists have determined minimum vertical accuracy requirements for the elevation data for use as input to hydrologic models. As a result, elevation data with a vertical accuracy specification of +/-15 centimeters (cm) relative to the North American Vertical Datum of 1988 (NAVD88) are being collected in critical areas using state-of-the-art differential global positioning system (GPS) technology and data processing techniques.
South America was home to the world's highest altitude soccer stadiums in 2020. At the top of the list was Daniel Alcides Carrión stadium, located at 4,380 meters above sea level (MASL), in the Peruvian city of Cerro del Pasco. It hosts matches during the Copa Perú, a regional football tournament. Also surpassing the four thousand meters of altitude, the municipal stadium of El Alto ranked second that year, followed by Víctor Agustín stadium, at 3,960 MASL. Both of these stadiums are located in Bolivia, which is also home to the highest altitude soccer stadium in a capital city – Hernando Siles stadium, in La Paz.
Digital Aerial Solutions LLC collected 185.5 square miles in the City of Palm Coast in Florida. The nominal pulse spacing for this project was 1 point every 0.35 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 1-Unclassified, 2-Ground, 7-Low Noise, 9-Water, 10-Ignored Ground due to breakline proximity, 17- Overpasses and Bridges, 18-High N...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Burundi Rural Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data was reported at 0.000 % in 2015. This stayed constant from the previous number of 0.000 % for 2000. Burundi Rural Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data is updated yearly, averaging 0.000 % from Dec 1990 (Median) to 2015, with 3 observations. The data reached an all-time high of 0.000 % in 2015 and a record low of 0.000 % in 2015. Burundi Rural Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Burundi – Table BI.World Bank.WDI: Environmental: Land Use, Protected Areas and National Wealth. Rural population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.;Center for International Earth Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - CIDR - City University of New York. 2021. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/d1x1-d702.;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Costa Rica CR: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 0.964 % in 2015. This records an increase from the previous number of 0.951 % for 2000. Costa Rica CR: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 0.964 % from Dec 1990 (Median) to 2015, with 3 observations. The data reached an all-time high of 1.061 % in 1990 and a record low of 0.951 % in 2000. Costa Rica CR: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Costa Rica – Table CR.World Bank.WDI: Environmental: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.;Center for International Earth Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - CIDR - City University of New York. 2021. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/d1x1-d702.;Weighted average;
The Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3 data set contains land areas with urban, quasi-urban, rural, and total populations (counts) within the LECZ for 234 countries and other recognized territories for the years 1990, 2000, and 2015. This data set updates initial estimates for the LECZ population by drawing on a newer collection of input data, and provides a range of estimates for at-risk population and land area. Constructing accurate estimates requires high-quality and methodologically consistent input data, and the LECZv3 evaluates multiple data sources for population totals, digital elevation model, and spatially-delimited urban classifications. Users can find the paper "Estimating Population and Urban Areas at Risk of Coastal Hazards, 1990-2015: How data choices matter" (MacManus, et al. 2021) in order to evaluate selected inputs for modeling Low Elevation Coastal Zones. According to the paper, the following are considered core data sets for the purposes of LECZv3 estimates: Multi-Error-Removed Improved-Terrain Digital Elevation Model (MERIT-DEM), Global Human Settlement (GHSL) Population Grid R2019 and Degree of Urbanization Settlement Model Grid R2019a v2, and the Gridded Population of the World, Version 4 (GPWv4), Revision 11. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) and the City University of New York (CUNY) Institute for Demographic Research (CIDR).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cameroon CM: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data was reported at 2.291 % in 2015. This records an increase from the previous number of 1.853 % for 2000. Cameroon CM: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data is updated yearly, averaging 1.853 % from Dec 1990 (Median) to 2015, with 3 observations. The data reached an all-time high of 2.291 % in 2015 and a record low of 1.291 % in 1990. Cameroon CM: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Cameroon – Table CM.World Bank.WDI: Environmental: Land Use, Protected Areas and National Wealth. Population below 5m is the percentage of the total population living in areas where the elevation is 5 meters or less.;Center for International Earth Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - CIDR - City University of New York. 2021. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/d1x1-d702.;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Argentina AR: Urban Land Area Where Elevation is Below 5 Meters data was reported at 243.141 sq km in 2015. This records an increase from the previous number of 208.442 sq km for 2000. Argentina AR: Urban Land Area Where Elevation is Below 5 Meters data is updated yearly, averaging 208.442 sq km from Dec 1990 (Median) to 2015, with 3 observations. The data reached an all-time high of 243.141 sq km in 2015 and a record low of 142.992 sq km in 1990. Argentina AR: Urban Land Area Where Elevation is Below 5 Meters data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Argentina – Table AR.World Bank.WDI: Environmental: Land Use, Protected Areas and National Wealth. Urban land area below 5m is the total urban land area in square kilometers where the elevation is 5 meters or less.;Center for International Earth Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - CIDR - City University of New York. 2021. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/d1x1-d702.;Sum;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Benin BJ: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data was reported at 7.254 % in 2015. This records a decrease from the previous number of 7.958 % for 2000. Benin BJ: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data is updated yearly, averaging 7.958 % from Dec 1990 (Median) to 2015, with 3 observations. The data reached an all-time high of 8.868 % in 1990 and a record low of 7.254 % in 2015. Benin BJ: Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Benin – Table BJ.World Bank.WDI: Environmental: Land Use, Protected Areas and National Wealth. Population below 5m is the percentage of the total population living in areas where the elevation is 5 meters or less.;Center for International Earth Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - CIDR - City University of New York. 2021. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/d1x1-d702.;Weighted average;
The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits ***** meters above sea level, and is more than 1,000 meters higher than the second-ranked city, Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's largest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of ***** meters.