Facebook
TwitterThis statistic shows the 20 countries* with the highest infant mortality rate in 2024. An estimated 101.3 infants per 1,000 live births died in the first year of life in Afghanistan in 2024. Infant and child mortality Infant mortality usually refers to the death of children younger than one year. Child mortality, which is often used synonymously with infant mortality, is the death of children younger than five. Among the main causes are pneumonia, diarrhea – which causes dehydration – and infections in newborns, with malnutrition also posing a severe problem. As can be seen above, most countries with a high infant mortality rate are developing countries or emerging countries, most of which are located in Africa. Good health care and hygiene are crucial in reducing child mortality; among the countries with the lowest infant mortality rate are exclusively developed countries, whose inhabitants usually have access to clean water and comprehensive health care. Access to vaccinations, antibiotics and a balanced nutrition also help reducing child mortality in these regions. In some countries, infants are killed if they turn out to be of a certain gender. India, for example, is known as a country where a lot of girls are aborted or killed right after birth, as they are considered to be too expensive for poorer families, who traditionally have to pay a costly dowry on the girl’s wedding day. Interestingly, the global mortality rate among boys is higher than that for girls, which could be due to the fact that more male infants are actually born than female ones. Other theories include a stronger immune system in girls, or more premature births among boys.
Facebook
TwitterThis statistic shows the 20 countries * with the lowest infant mortality rate in 2024. An estimated 1.5 out of 1,000 live births died in the first year of life in Slovenia and Singapore in 2024. Infant mortality Infant mortality rates are often used as an indicator of the health and well-being of a nation. Monaco, Iceland, and Japan are among the top three countries with the lowest infant mortality rates with around 2 infant deaths per 1,000 infants within their first year of life. Generally, the countries with the lowest infant mortality also have some of the highest average life expectancy figures. Additionally, the countries with the highest density of physicians and doctors also generally report low infant mortality. Yet, many different factors contribute to differing rates, including the overall income of a country, health spending per capita, a mother’s level of education, environmental conditions, and medical infrastructure, to name a few. This creates a lot of variation concerning the level of childbirth and infant care around the world. The countries with the highest rates of infant mortality include Afghanistan, Mali, and Somalia. These countries experience around 100 infant deaths per 1,000 infants in their first year of life. While the reasons for high rates of infant mortality are numerous, the leading causes of death for children under the year five around the world are Pneumonia, Diarrhea, and Prematurity.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
One in every 100 children dies before completing one year of life. Around 68 percent of infant mortality is attributed to deaths of children before completing 1 month. 15,000 children die every day – Child mortality is an everyday tragedy of enormous scale that rarely makes the headlines Child mortality rates have declined in all world regions, but the world is not on track to reach the Sustainable Development Goal for child mortality Before the Modern Revolution child mortality was very high in all societies that we have knowledge of – a quarter of all children died in the first year of life, almost half died before reaching the end of puberty Over the last two centuries all countries in the world have made very rapid progress against child mortality. From 1800 to 1950 global mortality has halved from around 43% to 22.5%. Since 1950 the mortality rate has declined five-fold to 4.5% in 2015. All countries in the world have benefitted from this progress In the past it was very common for parents to see children die, because both, child mortality rates and fertility rates were very high. In Europe in the mid 18th century parents lost on average between 3 and 4 of their children Based on this overview we are asking where the world is today – where are children dying and what are they dying from?
5.4 million children died in 2017 – Where did these children die? Pneumonia is the most common cause of death, preterm births and neonatal disorders is second, and diarrheal diseases are third – What are children today dying from? This is the basis for answering the question what can we do to make further progress against child mortality? We will extend this entry over the course of 2020.
@article{owidchildmortality, author = {Max Roser, Hannah Ritchie and Bernadeta Dadonaite}, title = {Child and Infant Mortality}, journal = {Our World in Data}, year = {2013}, note = {https://ourworldindata.org/child-mortality} }
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The infant mortality rate is defined as the number of deaths of children under one year of age, expressed per 1 000 live births. Some of the international variation in infant mortality rates is due to variations among countries in registering practices for premature infants. The United States and Canada are two countries which register a much higher proportion of babies weighing less than 500g, with low odds of survival, resulting in higher reported infant mortality. In Europe, several countries apply a minimum gestational age of 22 weeks (or a birth weight threshold of 500g) for babies to be registered as live births. This indicator is measured in terms of deaths per 1 000 live births.
This indicator is a summary measure of premature mortality, providing an explicit way of weighting deaths occurring at younger ages, which may be preventable. The calculation of Potential Years of Life Lost (PYLL) involves summing up deaths occurring at each age and multiplying this with the number of remaining years to live up to a selected age limit (age 75 is used in OECD Health Statistics). In order to assure cross-country and trend comparison, the PYLL are standardised, for each country and each year. The total OECD population in 2010 is taken as the reference population for age standardisation. This indicator is presented as a total and per gender. It is measured in years lost per 100 000 inhabitants (total), per 100 000 men and per 100 000 women, aged 0-69.
Life expectancy at birth is defined as how long, on average, a newborn can expect to live, if current death rates do not change. However, the actual age-specific death rate of any particular birth cohort cannot be known in advance. If rates are falling, actual life spans will be higher than life expectancy calculated using current death rates. Life expectancy at birth is one of the most frequently used health status indicators. Gains in life expectancy at birth can be attributed to a number of factors, including rising living standards, improved lifestyle and better education, as well as greater access to quality health services. This indicator is presented as a total and per gender and is measured in years.
Facebook
TwitterIn 2023, the infant mortality rate in India was at about 24.5 deaths per 1,000 live births, a significant decrease from previous years. Infant mortality as an indicatorThe infant mortality rate is the number of deaths of children under one year of age per 1,000 live births. This rate is an important key indicator for a country’s health and standard of living; a low infant mortality rate indicates a high standard of healthcare. Causes of infant mortality include premature birth, sepsis or meningitis, sudden infant death syndrome, and pneumonia. Globally, the infant mortality rate has shrunk from 63 infant deaths per 1,000 live births to 27 since 1990 and is forecast to drop to 8 infant deaths per 1,000 live births by the year 2100. India’s rural problemWith 32 infant deaths per 1,000 live births, India is neither among the countries with the highest nor among those with the lowest infant mortality rate. Its decrease indicates an increase in medical care and hygiene, as well as a decrease in female infanticide. Increasing life expectancy at birth is another indicator that shows that the living conditions of the Indian population are improving. Still, India’s inhabitants predominantly live in rural areas, where standards of living as well as access to medical care and hygiene are traditionally lower and more complicated than in cities. Public health programs are thus put in place by the government to ensure further improvement.
Facebook
TwitterNumber of infant deaths and infant mortality rates, by age group (neonatal and post-neonatal), 1991 to most recent year.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset presents the crude rate of infant mortality, defined as the number of deaths of infants aged under 1 year per 1,000 live births. It is a fundamental indicator of child health and wellbeing, reflecting the broader social, economic, and environmental conditions in which children are born and raised.
Rationale Reducing the infant mortality rate is a key public health objective. High rates may indicate issues related to maternal health, access to healthcare, socioeconomic inequalities, or environmental risks. Monitoring this indicator supports efforts to improve early life outcomes and reduce health disparities.
Numerator The numerator is the number of infant deaths (under 1 year of age) registered during the relevant period. Data are sourced from the Deaths Register.
Denominator The denominator is the number of live births registered during the same period. Births are assigned to geographical areas based on the mother’s usual residence. Data are sourced from the Births Register.
Caveats Live births are geographically assigned based on the mother’s usual residence, which may differ from the location of the birth or death. This should be considered when interpreting local-level data.
External References Fingertips Public Health Profiles – Infant Mortality Rate
Click here to explore more from the Birmingham and Solihull Integrated Care Partnerships Outcome Framework.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Objective: Retrospective analysis of routinely collected data using verbal and social autopsy tools to identify the medical causes of death and contribution of non-biological factors towards infant mortality Setting: The study site was Health and Demographic Surveillance System (HDSS), Ballabgarh, North India Participants: All infant deaths during year 2008 to 2012 were included for verbal autopsy whereas infant deaths from July 2012 to December 2012 were included for social autopsy. Outcome measures: Cause of death ascertained by validated verbal autopsy tool and level of delay based on three delay model using INDEPTH social autopsy tool were the main outcome measures. Results: Infant mortality rate during study period was 46.5/100 live births. Neonatal deaths contributed to 54.3% of infant deaths and 39% occurred on first day of life. Birth asphyxia (31.5%) followed by Low Birth Weight (LBW)/prematurity (26.5%) were the most common causes of neonatal death. While infective cause (57.8) was the most common cause of post-neonatal death. Care-seeking was delayed among 50% of neonatal deaths and 41.2% of post-neonatal deaths. Delay at level 1 was most common, observed in 32.4% of neonatal deaths and 29.4% of post-neonatal deaths. Deaths due to LBW/prematurity were mostly followed by delay at level 1. Conclusion: High proportion of preventable infant mortality still exists in an area which is under continuous health and demographic surveillance. There is need to enhance home based preventive care to enable the mother to identify and respond to danger signs. Verbal autopsy and social autopsy could be routinely done to guide policy interventions aimed at reduction of infant mortality.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundInfant health among newborns with neonatal abstinence syndrome (NAS) has been understudied. We examined infant mortality and hospitalizations among infants diagnosed with NAS after birth.MethodsAll live births in British Columbia (BC), Canada, for fiscal years from 2004–2005 to 2019–2020, were included (N = 696,900). NAS was identified based on International Classification of Diseases, version 10, Canadian modification (ICD-10-CA) codes; the outcomes included infant death and hospitalizations during the first year of life, ascertained from BC linked administrative data. Generalized estimating equation models were used to adjust for maternal factors.ResultsThere were 2,439 infants with NAS (3.50 per 1,000 live births). Unadjusted for other factors, infant mortality was 2.5-fold higher in infants with vs. without NAS (7.79 vs. 3.08 per 1,000 live births, respectively) due to increased post-discharge mortality NAS (5.76 vs. 1.34 per 1,000 surviving infants, respectively). These differences diminished after adjustment: adjusted odds ratio (AOR) for infant death was 0.85 [95% confidence interval (CI): 0.52–1.39]; AOR for post-discharge death was 1.75 (95% CI 1.00–3.06). Overall, 22.3% infants with NAS had at least one hospitalization after post-neonatal discharge, this proportion was 10.7% in those without NAS. During the study period, discharge to foster care declined from 49.5% to 20.3% in infants with NAS.ConclusionUnadjusted for other factors, infants with NAS had increased post-discharge infant mortality and hospitalizations during the first year of life. This association diminished after adjustment for adverse maternal and socio-medical conditions. Infants with NAS had a disproportionately higher rate of placement in foster care after birth, although this proportion declined dramatically between 2004/2005 and 2019/2020. These results highlight the importance of implementing integrated care services to support infants born with NAS and their mothers during the first year of life and beyond, even though NAS itself is not independently associated with increased infant mortality.
Facebook
TwitterIn 2023, the under-five child mortality rate in East Africa was highest in Somalia, with ****** deaths per one thousand live births. South Sudan followed, with ***** deaths per one thousand live births. The under five mortality rate, also known as the child mortality rate, refers to the number of newborns who do not survive past the first five years of life. This is generally expressed as a value per 1,000 live births. Child mortality also includes neonatal mortality (deaths within the first 28 days of life) and infant mortality (deaths within the first year of life).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundGlobally, with a neonatal mortality rate of 27/1000 live births, Sub-Saharan Africa has the highest rate in the world and is responsible for 43% of all infant fatalities. In the first week of life, almost three-fourths of neonatal deaths occur and about one million babies died on their first day of life. Previous studies lack conclusive evidence regarding the overall estimate of early neonatal mortality in Sub-Saharan Africa. Therefore, this review aimed to pool findings reported in the literature on magnitude of early neonatal mortality in Sub-Saharan Africa.MethodsThis review’s output is the aggregate of magnitude of early neonatal mortality in sub-Saharan Africa. Up until June 8, 2023, we performed a comprehensive search of the databases PubMed/Medline, PubMed Central, Hinary, Google, Cochrane Library, African Journals Online, Web of Science, and Google Scholar. The studies were evaluated using the JBI appraisal check list. STATA 17 was employed for the analysis. Measures of study heterogeneity and publication bias were conducted using the I2 test and the Eggers and Beggs tests, respectively. The Der Simonian and Laird random-effect model was used to calculate the combined magnitude of early neonatal mortality. Besides, subgroup analysis, sensitivity analysis, and meta regression were carried out to identify the source of heterogeneity.ResultsFourteen studies were included from a total of 311 articles identified by the search with a total of 278,173 participants. The pooled magnitude of early neonatal mortality in sub-Saharan Africa was 80.3 (95% CI 66 to 94.6) per 1000 livebirths. Ethiopia had the highest pooled estimate of early neonatal mortality rate, at 20.1%, and Cameroon had the lowest rate, at 0.5%. Among the included studies, both the Cochrane Q test statistic (χ2 = 6432.46, P
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesUnder the prevailing conditions of imbalanced life table and historic gender discrimination in India, our study examines crossover between life expectancies at ages zero, one and five years for India and quantifies the relative share of infant and under-five mortality towards this crossover.MethodsWe estimate threshold levels of infant and under-five mortality required for crossover using age specific death rates during 1981–2009 for 16 Indian states by sex (comprising of India’s 90% population in 2011). Kitagawa decomposition equations were used to analyse relative share of infant and under-five mortality towards crossover.FindingsIndia experienced crossover between life expectancies at ages zero and five in 2004 for menand in 2009 for women; eleven and nine Indian states have experienced this crossover for men and women, respectively. Men usually experienced crossover four years earlier than the women. Improvements in mortality below ages five have mostly contributed towards this crossover. Life expectancy at age one exceeds that at age zero for both men and women in India except for Kerala (the only state to experience this crossover in 2000 for men and 1999 for women).ConclusionsFor India, using life expectancy at age zero and under-five mortality rate together may be more meaningful to measure overall health of its people until the crossover. Delayed crossover for women, despite higher life expectancy at birth than for men reiterates that Indian women are still disadvantaged and hence use of life expectancies at ages zero, one and five become important for India. Greater programmatic efforts to control leading causes of death during the first month and 1–59 months in high child mortality areas can help India to attain this crossover early.
Facebook
TwitterIn 2023, the under-five child mortality rate in Southern Africa was highest in Mozambique with ***** deaths per one thousand live births. Lesotho followed, with ***** deaths per one thousand live births. The under five mortality rate, also known as the child mortality rate, refers to the number of newborns who do not survive past the first five years of life. This is generally expressed as a value per 1,000 live births, and child mortality also includes neonatal mortality (deaths within the first ** days of life) and infant mortality (deaths within the first year of life).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Eurostat’s annual data collections on demographic statistics are structured as follows:
NOWCAST: Annual data collection on provisional monthly data on live births and deaths covering at least six months of the reference year (Article 4.3 of the Commission implementing regulation (EU) No 205/2014).
DEMOBAL (Demographic balance): Annual data collection on provisional data on population, total live births and total deaths at national level (Article 4.1 of the Commission implementing regulation (EU) No 205/2014).
POPSTAT (Population Statistics): The most in-depth annual national and regional demographic and migration data collection. The data relate to populations, births, deaths, immigrants, emigrants, marriages and divorces, and is broken down into several categories (Article 3 of Regulation (EU) No 1260/2013 and Article 3 of Regulation (EC) No 862/2007).
The aim is to collect annual mandatory and voluntary demographic data from the national statistical institutes. Mandatory data are those defined by the legislation listed under ‘6.1. Institutional mandate - legal acts and other agreements’.
The completeness of the demographic data collected on a voluntary basis depends on the availability and completeness of information provided by the national statistical institutes. For more information on mandatory/voluntary data collection, see 6.1. Institutional mandate - legal acts and other agreements’.
The following statistics on deaths are collected from the National Statistical Institutes:
Statistics on mortality: based on the different breakdowns of data on deaths received, Eurostat produces the following:
https://ec.europa.eu/eurostat/cache/metadata/en/demo_r_gind3_esms.htm" target="_self">Information about statistics on deaths by NUTS regions.
Facebook
TwitterThe child mortality rate in the United States, for children under the age of five, was 462.9 deaths per thousand births in 1800. This means that for every thousand babies born in 1800, over 46 percent did not make it to their fifth birthday. Over the course of the next 220 years, this number has dropped drastically, and the rate has dropped to its lowest point ever in 2020 where it is just seven deaths per thousand births. Although the child mortality rate has decreased greatly over this 220 year period, there were two occasions where it increased; in the 1870s, as a result of the fourth cholera pandemic, smallpox outbreaks, and yellow fever, and in the late 1910s, due to the Spanish Flu pandemic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Eurostat’s annual data collections on demographic statistics are structured as follows:
NOWCAST: Annual data collection on provisional monthly data on live births and deaths covering at least six months of the reference year (Article 4.3 of the Commission implementing regulation (EU) No 205/2014).
DEMOBAL (Demographic balance): Annual data collection on provisional data on population, total live births and total deaths at national level (Article 4.1 of the Commission implementing regulation (EU) No 205/2014).
POPSTAT (Population Statistics): The most in-depth annual national and regional demographic and migration data collection. The data relate to populations, births, deaths, immigrants, emigrants, marriages and divorces, and is broken down into several categories (Article 3 of Regulation (EU) No 1260/2013 and Article 3 of Regulation (EC) No 862/2007).
The aim is to collect annual mandatory and voluntary demographic data from the national statistical institutes. Mandatory data are those defined by the legislation listed under ‘6.1. Institutional mandate - legal acts and other agreements’.
The completeness of the demographic data collected on a voluntary basis depends on the availability and completeness of information provided by the national statistical institutes. For more information on mandatory/voluntary data collection, see 6.1. Institutional mandate - legal acts and other agreements’.
The following statistics on deaths are collected from the National Statistical Institutes:
Statistics on mortality: based on the different breakdowns of data on deaths received, Eurostat produces the following:
https://ec.europa.eu/eurostat/cache/metadata/en/demo_r_gind3_esms.htm" target="_self">Information about statistics on deaths by NUTS regions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMortality in children under five years has been widely studied, whereas mortality at 5–9 years has received little attention. Using unique data from national registers in three Nordic countries, we aimed to characterize mortality directionality in children aged 0 to 9 years.Methods and FindingsThe cohort study included all children born in Denmark from 1973 to 2008 (n = 2,433,758), Sweden from 1973 to 2006 (n = 3,400,212), and a random sample of 89.3% of children born in Finland from 1987 to 2007 (n = 1,272,083). Children were followed from 0 to 9 years, and cumulative mortality and mortality rates were compared by age, gender, cause of death, and calendar periods. Among the 7,105,962 children, there were 48,299 deaths during study period. From 1981–1985 to 2001–2005, all-cause mortality rates were reduced by between 34% and 62% at different ages. Overall mortality rate ratio between boys and girls decreased from 1.25 to 1.21 with the most prominent reduction in children aged 5–9 years (from 1.59 to 1.19). Neoplasms, diseases of the nervous system and transport accidents were the most frequent cause of death after the first year of life. These three leading causes of death declined by 42% (from 6.2 to 3.6 per 100,000 person years), 43% (from 3.7 to 2.1) and 62% (from 3.9 to 1.5) in boys, and 25% (from 4.1 to 3.1 per 100000 person years), 42% (from 3.4 to 1.9) and 63% (from 3.0 to 1.1) in girls, respectively. Mortality from neoplasms was the highest in each age except infants when comparing cause-specific mortality, and half of deaths from diseases of the nervous system occurred in infancy. Mortality rate due to transport accidents increased with age and was highest in boys aged 5–9 years.ConclusionsMortality rate in children aged 0–9 years has been decreasing with diminished difference between genders over the past decades. Our results suggest the importance of further research on mortality by causes of neoplasms, and causes of transport accidents—especially in children aged 5–9 years.
Facebook
TwitterUNICEF's country profile for India, including under-five mortality rates, child health, education and sanitation data.
Facebook
TwitterThe infant mortality rate in Russia, for children under the age of one year old, was over 266 deaths per thousand births in 1870. This means that for all babies born in 1870, over one quarter did not survive past their first birthday. Unfortunately some information is missing in the early twentieth century, during Russia's revolutionary period and again during the Second World War, however it is noticeable that Russia's infant mortality rate fell to one death for every ten babies born in 1955, and from this point the rate has fallen to just six deaths per thousand births today.
Facebook
Twitterhttps://datacatalog.worldbank.org/public-licenses?fragment=externalhttps://datacatalog.worldbank.org/public-licenses?fragment=external
The second National Family Health Survey (NFHS-2), conducted in 1998-99, provides information on fertility, mortality, family planning, and important aspects of nutrition, health, and health care. The International Institute for Population Sciences (IIPS) coordinated the survey, which collected information from a nationally representative sample of more than 90,000 ever-married women age 15-49. The NFHS-2 sample covers 99 percent of India's population living in all 26 states. This report is based on the survey data for 25 of the 26 states, however, since data collection in Tripura was delayed due to local problems in the state.
IIPS also coordinated the first National Family Health Survey (NFHS-1) in 1992-93. Most of the types of information collected in NFHS-2 were also collected in the earlier survey, making it possible to identify trends over the intervening period of six and one-half years. In addition, the NFHS-2 questionnaire covered a number of new or expanded topics with important policy implications, such as reproductive health, women's autonomy, domestic violence, women's nutrition, anaemia, and salt iodization.
The NFHS-2 survey was carried out in two phases. Ten states were surveyed in the first phase which began in November 1998 and the remaining states (except Tripura) were surveyed in the second phase which began in March 1999. The field staff collected information from 91,196 households in these 25 states and interviewed 89,199 eligible women in these households. In addition, the survey collected information on 32,393 children born in the three years preceding the survey. One health investigator on each survey team measured the height and weight of eligible women and children and took blood samples to assess the prevalence of anaemia.
SUMMARY OF FINDINGS
POPULATION CHARACTERISTICS
Three-quarters (73 percent) of the population lives in rural areas. The age distribution is typical of populations that have recently experienced a fertility decline, with relatively low proportions in the younger and older age groups. Thirty-six percent of the population is below age 15, and 5 percent is age 65 and above. The sex ratio is 957 females for every 1,000 males in rural areas but only 928 females for every 1,000 males in urban areas, suggesting that more men than women have migrated to urban areas.
The survey provides a variety of demographic and socioeconomic background information. In the country as a whole, 82 percent of household heads are Hindu, 12 percent are Muslim, 3 percent are Christian, and 2 percent are Sikh. Muslims live disproportionately in urban areas, where they comprise 15 percent of household heads. Nineteen percent of household heads belong to scheduled castes, 9 percent belong to scheduled tribes, and 32 percent belong to other backward classes (OBCs). Two-fifths of household heads do not belong to any of these groups.
Questions about housing conditions and the standard of living of households indicate some improvements since the time of NFHS-1. Sixty percent of households in India now have electricity and 39 percent have piped drinking water compared with 51 percent and 33 percent, respectively, at the time of NFHS-1. Sixty-four percent of households have no toilet facility compared with 70 percent at the time of NFHS-1.
About three-fourths (75 percent) of males and half (51 percent) of females age six and above are literate, an increase of 6-8 percentage points from literacy rates at the time of NFHS-1. The percentage of illiterate males varies from 6-7 percent in Mizoram and Kerala to 37 percent in Bihar and the percentage of illiterate females varies from 11 percent in Mizoram and 15 percent in Kerala to 65 percent in Bihar. Seventy-nine percent of children age 6-14 are attending school, up from 68 percent in NFHS-1. The proportion of children attending school has increased for all ages, particularly for girls, but girls continue to lag behind boys in school attendance. Moreover, the disparity in school attendance by sex grows with increasing age of children. At age 6-10, 85 percent of boys attend school compared with 78 percent of girls. By age 15-17, 58 percent of boys attend school compared with 40 percent of girls. The percentage of girls 6-17 attending school varies from 51 percent in Bihar and 56 percent in Rajasthan to over 90 percent in Himachal Pradesh and Kerala.
Women in India tend to marry at an early age. Thirty-four percent of women age 15-19 are already married including 4 percent who are married but gauna has yet to be performed. These proportions are even higher in the rural areas. Older women are more likely than younger women to have married at an early age: 39 percent of women currently age 45-49 married before age 15 compared with 14 percent of women currently age 15-19. Although this indicates that the proportion of women who marry young is declining rapidly, half the women even in the age group 20-24 have married before reaching the legal minimum age of 18 years. On average, women are five years younger than the men they marry. The median age at marriage varies from about 15 years in Madhya Pradesh, Bihar, Uttar Pradesh, Rajasthan, and Andhra Pradesh to 23 years in Goa.
As part of an increasing emphasis on gender issues, NFHS-2 asked women about their participation in household decisionmaking. In India, 91 percent of women are involved in decision-making on at least one of four selected topics. A much lower proportion (52 percent), however, are involved in making decisions about their own health care. There are large variations among states in India with regard to women's involvement in household decisionmaking. More than three out of four women are involved in decisions about their own health care in Himachal Pradesh, Meghalaya, and Punjab compared with about two out of five or less in Madhya Pradesh, Orissa, and Rajasthan. Thirty-nine percent of women do work other than housework, and more than two-thirds of these women work for cash. Only 41 percent of women who earn cash can decide independently how to spend the money that they earn. Forty-three percent of working women report that their earnings constitute at least half of total family earnings, including 18 percent who report that the family is entirely dependent on their earnings. Women's work-participation rates vary from 9 percent in Punjab and 13 percent in Haryana to 60-70 percent in Manipur, Nagaland, and Arunachal Pradesh.
FERTILITY AND FAMILY PLANNING
Fertility continues to decline in India. At current fertility levels, women will have an average of 2.9 children each throughout their childbearing years. The total fertility rate (TFR) is down from 3.4 children per woman at the time of NFHS-1, but is still well above the replacement level of just over two children per woman. There are large variations in fertility among the states in India. Goa and Kerala have attained below replacement level fertility and Karnataka, Himachal Pradesh, Tamil Nadu, and Punjab are at or close to replacement level fertility. By contrast, fertility is 3.3 or more children per woman in Meghalaya, Uttar Pradesh, Rajasthan, Nagaland, Bihar, and Madhya Pradesh. More than one-third to less than half of all births in these latter states are fourth or higher-order births compared with 7-9 percent of births in Kerala, Goa, and Tamil Nadu.
Efforts to encourage the trend towards lower fertility might usefully focus on groups within the population that have higher fertility than average. In India, rural women and women from scheduled tribes and scheduled castes have somewhat higher fertility than other women, but fertility is particularly high for illiterate women, poor women, and Muslim women. Another striking feature is the high level of childbearing among young women. More than half of women age 20-49 had their first birth before reaching age 20, and women age 15-19 account for almost one-fifth of total fertility. Studies in India and elsewhere have shown that health and mortality risks increase when women give birth at such young ages?both for the women themselves and for their children. Family planning programmes focusing on women in this age group could make a significant impact on maternal and child health and help to reduce fertility.
INFANT AND CHILD MORTALITY
NFHS-2 provides estimates of infant and child mortality and examines factors associated with the survival of young children. During the five years preceding the survey, the infant mortality rate was 68 deaths at age 0-11 months per 1,000 live births, substantially lower than 79 per 1,000 in the five years preceding the NFHS-1 survey. The child mortality rate, 29 deaths at age 1-4 years per 1,000 children reaching age one, also declined from the corresponding rate of 33 per 1,000 in NFHS-1. Ninety-five children out of 1,000 born do not live to age five years. Expressed differently, 1 in 15 children die in the first year of life, and 1 in 11 die before reaching age five. Child-survival programmes might usefully focus on specific groups of children with particularly high infant and child mortality rates, such as children who live in rural areas, children whose mothers are illiterate, children belonging to scheduled castes or scheduled tribes, and children from poor households. Infant mortality rates are more than two and one-half times as high for women who did not receive any of the recommended types of maternity related medical care than for mothers who did receive all recommended types of care.
HEALTH, HEALTH CARE, AND NUTRITION
Promotion of maternal and child health has been one of the most important components of the Family Welfare Programme of the Government of India. One goal is for each pregnant woman to receive at least three antenatal check-ups plus two tetanus toxoid injections and a full course of iron and folic acid
Facebook
TwitterThis statistic shows the 20 countries* with the highest infant mortality rate in 2024. An estimated 101.3 infants per 1,000 live births died in the first year of life in Afghanistan in 2024. Infant and child mortality Infant mortality usually refers to the death of children younger than one year. Child mortality, which is often used synonymously with infant mortality, is the death of children younger than five. Among the main causes are pneumonia, diarrhea – which causes dehydration – and infections in newborns, with malnutrition also posing a severe problem. As can be seen above, most countries with a high infant mortality rate are developing countries or emerging countries, most of which are located in Africa. Good health care and hygiene are crucial in reducing child mortality; among the countries with the lowest infant mortality rate are exclusively developed countries, whose inhabitants usually have access to clean water and comprehensive health care. Access to vaccinations, antibiotics and a balanced nutrition also help reducing child mortality in these regions. In some countries, infants are killed if they turn out to be of a certain gender. India, for example, is known as a country where a lot of girls are aborted or killed right after birth, as they are considered to be too expensive for poorer families, who traditionally have to pay a costly dowry on the girl’s wedding day. Interestingly, the global mortality rate among boys is higher than that for girls, which could be due to the fact that more male infants are actually born than female ones. Other theories include a stronger immune system in girls, or more premature births among boys.