Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Science in (Higher) Education – data of the February 2017 survey
This data set contains:
Survey structure
The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).
Demographic questions
Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:
The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:
We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.
Remark on OER question
Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.
Data collection
The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.
The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.
Data clearance
We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.
Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).
References
Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.
First results of the survey are presented in the poster:
Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561
Contact:
Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.
[1] https://www.limesurvey.org
[2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.
Historical Census data (2006, 2011, 2016 and 2021) on highest certificate, diploma or degree of visible minority groups, including percentages.
This map answers the question "What is the most common, or predominant, education level for people in this area?" The map shows predominant educational attainment in each census tract. Darker colors indicate a greater gap between the predominant group and the next largest group.The U.S. Census Bureau asks citizens to indicate how far they went in formal education. The database includes seven different columns, each representing a count of population by that education level. A simple routine in compares the seven columns of information, and finds which one has the highest value, writing that to a string field. Each tract's transparency is set by a transparency field added to the data.Predominance maps can be created in ArcGIS Online by adding two fields, calculating their values, and setting up the renderer based on those two fields. See this blog by Jim Herries for details on how to create a predominance map in ArcGIS Online from any feature layer.See this GitHub repo by Jennifer Bell for a script you can run in ArcMap as a script tool, to calculate predominance for any columns of data you have.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Problem-solving in technology-rich environments (PS-TRE) - Distribution of non-respondents and proficiency levels, by labour force status, highest level of education and age group, population aged 16-65, Canada, provinces and territories 2012.
https://www.icpsr.umich.edu/web/ICPSR/studies/33321/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/33321/terms
The University of Washington - Beyond High School (UW-BHS) project surveyed students in Washington State to examine factors impacting educational attainment and the transition to adulthood among high school seniors. The project began in 1999 in an effort to assess the impact of I-200 (the referendum that ended Affirmative Action) on minority enrollment in higher education in Washington. The research objectives of the project were: (1) to describe and explain differences in the transition from high school to college by race and ethnicity, socioeconomic origins, and other characteristics, (2) to evaluate the impact of the Washington State Achievers Program, and (3) to explore the implications of multiple race and ethnic identities. Following a successful pilot survey in the spring of 2000, the project eventually included baseline and one-year follow-up surveys (conducted in 2002, 2003, 2004, and 2005) of almost 10,000 high school seniors in five cohorts across several Washington school districts. The high school senior surveys included questions that explored students' educational aspirations and future career plans, as well as questions on family background, home life, perceptions of school and home environments, self-esteem, and participation in school related and non-school related activities. To supplement the 2000, 2002, and 2003 student surveys, parents of high school seniors were also queried to determine their expectations and aspirations for their child's education, as well as their own educational backgrounds and fields of employment. Parents were also asked to report any financial measures undertaken to prepare for their child's continued education, and whether the household received any form of financial assistance. In 2010, a ten-year follow-up with the 2000 senior cohort was conducted to assess educational, career, and familial outcomes. The ten year follow-up surveys collected information on educational attainment, early employment experiences, family and partnership, civic engagement, and health status. The baseline, parent, and follow-up surveys also collected detailed demographic information, including age, sex, ethnicity, language, religion, education level, employment, income, marital status, and parental status.
Average scores in literacy, numeracy and adaptive problem solving, by highest level of education, age group and gender, population aged 16 to 65, Canada and provinces, 2022.
Early leavers from education and training refers to persons aged 18 to 24 fulfilling the following two conditions: first, the highest level of education or training attained is ISCED 0, 1, 2 or 3c short, second, respondents declared not having received any education or training in the four weeks preceding the survey (numerator). The denominator consists of the total population of the same age group, excluding no answers to the questions 'highest level of education or training attained' and 'participation to education and training'.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
School enrollment data are used to assess the socioeconomic condition of school-age children. Government agencies also require these data for funding allocations and program planning and implementation.
Data on school enrollment and grade or level attending were derived from answers to Question 10 in the 2015 American Community Survey (ACS). People were classified as enrolled in school if they were attending a public or private school or college at any time during the 3 months prior to the time of interview. The question included instructions to “include only nursery or preschool, kindergarten, elementary school, home school, and schooling which leads to a high school diploma, or a college degree.” Respondents who did not answer the enrollment question were assigned the enrollment status and type of school of a person with the same age, sex, race, and Hispanic or Latino origin whose residence was in the same or nearby area.
School enrollment is only recorded if the schooling advances a person toward an elementary school certificate, a high school diploma, or a college, university, or professional school (such as law or medicine) degree. Tutoring or correspondence schools are included if credit can be obtained from a public or private school or college. People enrolled in “vocational, technical, or business school” such as post secondary vocational, trade, hospital school, and on job training were not reported as enrolled in school. Field interviewers were instructed to classify individuals who were home schooled as enrolled in private school. The guide sent out with the mail questionnaire includes instructions for how to classify home schoolers.
Enrolled in Public and Private School – Includes people who attended school in the reference period and indicated they were enrolled by marking one of the questionnaire categories for “public school, public college,” or “private school, private college, home school.” The instruction guide defines a public school as “any school or college controlled and supported primarily by a local, county, state, or federal government.” Private schools are defined as schools supported and controlled primarily by religious organizations or other private groups. Home schools are defined as “parental-guided education outside of public or private school for grades 1-12.” Respondents who marked both the “public” and “private” boxes are edited to the first entry, “public.”
Grade in Which Enrolled – From 1999-2007, in the ACS, people reported to be enrolled in “public school, public college” or “private school, private college” were classified by grade or level according to responses to Question 10b, “What grade or level was this person attending?” Seven levels were identified: “nursery school, preschool;” “kindergarten;” elementary “grade 1 to grade 4” or “grade 5 to grade 8;” high school “grade 9 to grade 12;” “college undergraduate years (freshman to senior);” and “graduate or professional school (for example: medical, dental, or law school).”
In 2008, the school enrollment questions had several changes. “Home school” was explicitly included in the “private school, private college” category. For question 10b the categories changed to the following “Nursery school, preschool,” “Kindergarten,” “Grade 1 through grade 12,” “College undergraduate years (freshman to senior),” “Graduate or professional school beyond a bachelor’s degree (for example: MA or PhD program, or medical or law school).” The survey question allowed a write-in for the grades enrolled from 1-12.
Question/Concept History – Since 1999, the ACS enrollment status question (Question 10a) refers to “regular school or college,” while the 1996-1998 ACS did not restrict reporting to “regular” school, and contained an additional category for the “vocational, technical or business school.” The 1996-1998 ACS used the educational attainment question to estimate level of enrollment for those reported to be enrolled in school, and had a single year write-in for the attainment of grades 1 through 11. Grade levels estimated using the attainment question were not consistent with other estimates, so a new question specifically asking grade or level of enrollment was added starting with the 1999 ACS questionnaire.
Limitation of the Data – Beginning in 2006, the population universe in the ACS includes people living in group quarters. Data users may see slight differences in levels of school enrollment in any given geographic area due to the inclusion of this population. The extent of this difference, if any, depends on the type of group quarters present and whether the group quarters population makes up a large proportion of the total population. For example, in areas that are home to several colleges and universities, the percent of individuals 18 to 24 who were enrolled in college or graduate school would increase, as people living in college dormitories are now included in the universe.
Abstract copyright UK Data Service and data collection copyright owner.
https://crystalroof.co.uk/api-terms-of-usehttps://crystalroof.co.uk/api-terms-of-use
This method returns Census 2021 estimates that classify usual residents aged 16 years and over by their highest level of qualification.
The highest level of qualification is derived from the question asking people to indicate all qualifications held, or their nearest equivalent. This may include foreign qualifications where they were matched to the closest UK equivalent.
The types of qualification included in each level are:
Highest level of qualification is split into 8 categories including total.
The estimates are as at Census Day, 21 March 2021.
https://www.icpsr.umich.edu/web/ICPSR/studies/4322/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/4322/terms
This special topic poll, conducted March 31-April 9, 2005, is part of a continuing series of monthly surveys that solicit public opinion on the presidency and on a range of other political and social issues. A national sample of 1,586 respondents aged 14 to 24 years was surveyed, including oversamples of African American youth, Hispanic youth, and 14- to 20-year olds. Despite being termed a monthly poll, the foci of this poll were the opinions and judgments of teenagers and young adults about various aspects of the education system and process in the United States. Views were sought on the most important problem facing young people, the highest level of education respondents hoped to achieve, the highest level they expected to actually achieve, and whether a college degree was necessary to "get ahead". Respondents were asked about their plans after high school, the quality of their high school and its teachers and staff, whether their high school education was adequately preparing them for college and/or the job market, what measures respondents took or would like take to improve their chances of getting into the college of their choice, the importance of grade point averages and performance on standardized tests in getting into college, and their ability to get information about educational opportunities. Similar questions were asked of those respondents who were college students, regarding assistance received from college professors, the importance of internships, and whether college was adequately preparing them to get a well-paying job after graduation. Additional questions addressed MTV's involvement in issues concerning young people and how much impact MTV could have in raising awareness among young people about the importance of education. Demographic information includes age, race, sex, education, employment status, ethnicity, parents' education, perceived social class, level of religious participation, religious preference, whether respondents considered themselves to be an evangelical or born-again Christian, and the presence of other household members between the ages of 14 and 24.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Average scores in literacy, numeracy and adaptive problem solving, by highest level of education, age group and gender, population aged 16 to 65, Canada and provinces, 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data collection process commenced with web scraping of a selected higher education institution's website, collecting any data that relates to the admission topic of higher education institutions, during the period from July to September 2023. This resulted in a raw dataset primarily cantered around admission-related content. Subsequently, meticulous data cleaning and organization procedures were implemented to refine the dataset. The primary data, in its raw form before annotation into a question-and-answer format, was predominantly in the Indonesian language. Following this, a comprehensive annotation process was conducted to enrich the dataset with specific admission-related information, transforming it into secondary data. Both primary and secondary data predominantly remained in the Indonesian language. To enhance data quality, we added filters to remove or exclude: 1) data not in the Indonesian language, 2) data unrelated to the admission topic, and 3) redundant entries. This meticulous curation has culminated in the creation of a finalized dataset, meticulously prepared and now readily available for research and analysis in the domain of higher education admission.
This map answers the question "What is the most common, or predominant, education level for people in this area?" The map shows predominant educational attainment in each census tract. Darker colors indicate a greater gap between the predominant group and the next largest group.The U.S. Census Bureau asks citizens to indicate how far they went in formal education. The database includes seven different columns, each representing a count of population by that education level. A simple routine in compares the seven columns of information, and finds which one has the highest value, writing that to a string field. Each tract's transparency is set by a transparency field added to the data.Predominance maps can be created in ArcGIS Online by adding two fields, calculating their values, and setting up the renderer based on those two fields. See this blog by Jim Herries for details on how to create a predominance map in ArcGIS Online from any feature layer.See this GitHub repo by Jennifer Bell for a script you can run in ArcMap as a script tool, to calculate predominance for any columns of data you have.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
MathE is a mathematical platform developed under the MathE project (mathe.pixel-online.org). The dataset has 9546 answers to questions in the Mathematical topics taught in higher education. The file has eight features, named: Student ID, Student Country, Question ID, Type of answer (correct or incorrect), Question level (basic or advanced), Math Topic, Math Subtopic, and Question Keywords. The question level was associated with the professor who submitted the question. The data was obtained from February 2019 until December 2023.
School enrollment data are used to assess the socioeconomic condition of school-age children. Government agencies also require these data for funding allocations and program planning and implementation.
Data on school enrollment and grade or level attending were derived from answers to Question 10 in the 2015 American Community Survey (ACS). People were classified as enrolled in school if they were attending a public or private school or college at any time during the 3 months prior to the time of interview. The question included instructions to “include only nursery or preschool, kindergarten, elementary school, home school, and schooling which leads to a high school diploma, or a college degree.” Respondents who did not answer the enrollment question were assigned the enrollment status and type of school of a person with the same age, sex, race, and Hispanic or Latino origin whose residence was in the same or nearby area.
School enrollment is only recorded if the schooling advances a person toward an elementary school certificate, a high school diploma, or a college, university, or professional school (such as law or medicine) degree. Tutoring or correspondence schools are included if credit can be obtained from a public or private school or college. People enrolled in “vocational, technical, or business school” such as post secondary vocational, trade, hospital school, and on job training were not reported as enrolled in school. Field interviewers were instructed to classify individuals who were home schooled as enrolled in private school. The guide sent out with the mail questionnaire includes instructions for how to classify home schoolers.
Enrolled in Public and Private School – Includes people who attended school in the reference period and indicated they were enrolled by marking one of the questionnaire categories for “public school, public college,” or “private school, private college, home school.” The instruction guide defines a public school as “any school or college controlled and supported primarily by a local, county, state, or federal government.” Private schools are defined as schools supported and controlled primarily by religious organizations or other private groups. Home schools are defined as “parental-guided education outside of public or private school for grades 1-12.” Respondents who marked both the “public” and “private” boxes are edited to the first entry, “public.”
Grade in Which Enrolled – From 1999-2007, in the ACS, people reported to be enrolled in “public school, public college” or “private school, private college” were classified by grade or level according to responses to Question 10b, “What grade or level was this person attending?” Seven levels were identified: “nursery school, preschool;” “kindergarten;” elementary “grade 1 to grade 4” or “grade 5 to grade 8;” high school “grade 9 to grade 12;” “college undergraduate years (freshman to senior);” and “graduate or professional school (for example: medical, dental, or law school).”
In 2008, the school enrollment questions had several changes. “Home school” was explicitly included in the “private school, private college” category. For question 10b the categories changed to the following “Nursery school, preschool,” “Kindergarten,” “Grade 1 through grade 12,” “College undergraduate years (freshman to senior),” “Graduate or professional school beyond a bachelor’s degree (for example: MA or PhD program, or medical or law school).” The survey question allowed a write-in for the grades enrolled from 1-12.
Question/Concept History – Since 1999, the ACS enrollment status question (Question 10a) refers to “regular school or college,” while the 1996-1998 ACS did not restrict reporting to “regular” school, and contained an additional category for the “vocational, technical or business school.” The 1996-1998 ACS used the educational attainment question to estimate level of enrollment for those reported to be enrolled in school, and had a single year write-in for the attainment of grades 1 through 11. Grade levels estimated using the attainment question were not consistent with other estimates, so a new question specifically asking grade or level of enrollment was added starting with the 1999 ACS questionnaire.
Limitation of the Data – Beginning in 2006, the population universe in the ACS includes people living in group quarters. Data users may see slight differences in levels of school enrollment in any given geographic area due to the inclusion of this population. The extent of this difference, if any, depends on the type of group quarters present and whether the group quarters population makes up a large proportion of the total population. For example, in areas that are home to several colleges and universities, the percent of individuals 18 to 24 who were enrolled in college or graduate school would increase, as people living in college dormitories are now included in the universe.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for MMLU Pro with education levels
MMLU Pro dataset with education levels
Dataset Details
Dataset Description
A popular human-like complexity metric is an education level that is appropriate for a question. To get it for MMLU Pro dataset, we ask a large LLM (Mistral 123B) to act as a judge and return its estimate. Next, we query the large LLM again to estimate the quality of the previous assessment from 1 to 10 following the practice introduced… See the full description on the dataset page: https://huggingface.co/datasets/LabARSS/MMLU-Pro-education-level.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify usual residents aged 16 years and over in England and Wales by highest level of qualification and by country of birth. The estimates are as at Census Day, 21 March 2021.
There are quality considerations about higher education qualifications, including those at Level 4+, responses from older people and international migrants, and comparability with 2011 Census data. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Lower tier local authorities
Lower tier local authorities provide a range of local services. There are 309 lower tier local authorities in England made up of 181 non-metropolitan districts, 59 unitary authorities, 36 metropolitan districts and 33 London boroughs (including City of London). In Wales there are 22 local authorities made up of 22 unitary authorities.
Coverage
Census 2021 statistics are published for the whole of England and Wales. However, you can choose to filter areas by:
Highest level of qualification
The highest level of qualification is derived from the question asking people to indicate all qualifications held, or their nearest equivalent.
This may include foreign qualifications where they were matched to the closest UK equivalent.
Country of birth
The country in which a person was born.
For people not born in one of in the four parts of the UK, there was an option to select "elsewhere".
People who selected "elsewhere" were asked to write in the current name for their country of birth.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify usual residents aged 16 years and over in England and Wales by highest level of qualification and by sex. The estimates are as at Census Day, 21 March 2021.
There are quality considerations about higher education qualifications, including those at Level 4+, responses from older people and international migrants, and comparability with 2011 Census data. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Lower tier local authorities
Lower tier local authorities provide a range of local services. There are 309 lower tier local authorities in England made up of 181 non-metropolitan districts, 59 unitary authorities, 36 metropolitan districts and 33 London boroughs (including City of London). In Wales there are 22 local authorities made up of 22 unitary authorities.
Coverage
Census 2021 statistics are published for the whole of England and Wales. However, you can choose to filter areas by:
Highest level of qualification
The highest level of qualification is derived from the question asking people to indicate all qualifications held, or their nearest equivalent.
This may include foreign qualifications where they were matched to the closest UK equivalent.
Sex
This is the sex recorded by the person completing the census. The options were “Female” and “Male”.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Early leavers from education and training refers to persons aged 18 to 24 fulfilling the following two conditions: first, the highest level of education or training attained is ISCED 0, 1, 2 or 3c short, second, respondents declared not having received any education or training in the four weeks preceding the survey (numerator). The denominator consists of the total population of the same age group, excluding no answers to the questions 'highest level of education or training attained' and 'participation to education and training'.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Science in (Higher) Education – data of the February 2017 survey
This data set contains:
Survey structure
The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).
Demographic questions
Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:
The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:
We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.
Remark on OER question
Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.
Data collection
The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.
The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.
Data clearance
We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.
Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).
References
Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.
First results of the survey are presented in the poster:
Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561
Contact:
Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.
[1] https://www.limesurvey.org
[2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.