In 2022, the prevalence of violent crime increased for all races in the United States in comparison to the previous year. In that year, around **** percent of White Americans experienced one or more violent victimizations and approximately **** percent of Black or African American people were the victims of a violent crime.
Section 95 of the Criminal Justice Act 1991 requires the Government to publish statistical data to assess whether any discrimination exists in how the CJS treats individuals based on their ethnicity.
These statistics are used by policy makers, the agencies who comprise the CJS and others (e.g. academics, interested bodies) to monitor differences between ethnic groups, and to highlight areas where practitioners and others may wish to undertake more in-depth analysis. The identification of differences should not be equated with discrimination as there are many reasons why apparent disparities may exist. The main findings are:
The 2012/13 Crime Survey for England and Wales shows that adults from self-identified Mixed, Black and Asian ethnic groups were more at risk of being a victim of personal crime than adults from the White ethnic group. This has been consistent since 2008/09 for adults from a Mixed or Black ethnic group; and since 2010/11 for adults from an Asian ethnic group. Adults from a Mixed ethnic group had the highest risk of being a victim of personal crime in each year between 2008/09 and 2012/13.
Homicide is a rare event, therefore, homicide victims data are presented aggregated in three-year periods in order to be able to analyse the data by ethnic appearance. The most recent period for which data are available is 2009/10 to 2011/12.
The overall number of homicides has decreased over the past three three-year periods. The number of homicide victims of White and Other ethnic appearance decreased during each of these three-year periods. However the number of victims of Black ethnic appearance increased in 2006/07 to 2008/09 before falling again in 2009/10 to 2011/12.
For those homicides where there is a known suspect, the majority of victims were of the same ethnic group as the principal suspect. However, the relationship between victim and principal suspect varied across ethnic groups. In the three-year period from 2009/10 to 2011/12, for victims of White ethnic appearance the largest proportion of principal suspects were from the victim’s own family; for victims of Black ethnic appearance, the largest proportion of principal suspects were a friend or acquaintance of the victim; while for victims of Asian ethnic appearance, the largest proportion of principal suspects were strangers.
Homicide by sharp instrument was the most common method of killing for victims of White, Black and Asian ethnic appearance in the three most recent three-year periods. However, for homicide victims of White ethnic appearance hitting and kicking represented the second most common method of killing compared with shooting for victims of Black ethnic appearance, and other methods of killing for victims of Asian ethnic appearance.
In 2011/12, a person aged ten or older (the age of criminal responsibility), who self-identified as belonging to the Black ethnic group was six times more likely than a White person to be stopped and searched under section 1 (s1) of the Police and Criminal Evidence Act 1984 and other legislation in England and Wales; persons from the Asian or Mixed ethnic group were just over two times more likely to be stopped and searched than a White person.
Despite an increase across all ethnic groups in the number of stops and searches conducted under s1 powers between 2007/08 and 2011/12, the number of resultant arrests decreased across most ethnic groups. Just under one in ten stop and searches in 2011/12 under s1 powers resulted in an arrest in the White and Black self-identified ethnic groups, compared with 12% in 2007/08. The proportion of resultant arrests has been consistently lower for the Asian self-identified ethnic group.
In 2011/12, for those aged 10 or older, a Black person was nearly three times more likely to be arrested per 1,000 population than a White person, while a person from the Mixed ethnic group was twice as likely. There was no difference in the rate of arrests between Asian and White persons.
The number of arrests decreased in each year between 2008/09 and 2011/12, consistent with a downward trend in police recorded crime since 2004/05. Overall, the number of arrests decreased for all ethnic groups between 2008/09 and 2011/12, however arrests of suspects from the Black, Asian and Mixed ethnic groups peaked in 2010/11.
Arrests for drug offences and sexual offences increased for suspects in all ethnic groups except the Chinese or Other ethnic group between 2008/09 and 2011/12. In addition, there were increases in arrests for burglary, robbery and the other offences category for suspects from the Black and Asian ethnic groups.
The use of out of court disposals (Penalty Notices for Disorder and caution
The four Nordic countries Sweden, Iceland, Norway, and Denmark are between the five countries with the highest rate of reported sexual violence in Europe in 2022. More than 200 cases per 100,000 inhabitants were reported in Sweden.Please note that reporting varies from country to country, and the willingness of victims to come forward can vary across regions and cultures, therefore a comparison between the countries should be taken with caution.
The areas of focus include: Victimisation, Police Activity, Defendants and Court Outcomes, Offender Management, Offender Characteristics, Offence Analysis, and Practitioners.
This is the latest biennial compendium of Statistics on Race and the Criminal Justice System and follows on from its sister publication Statistics on Women and the Criminal Justice System, 2017.
This publication compiles statistics from data sources across the Criminal Justice System (CJS), to provide a combined perspective on the typical experiences of different ethnic groups. No causative links can be drawn from these summary statistics. For the majority of the report no controls have been applied for other characteristics of ethnic groups (such as average income, geography, offence mix or offender history), so it is not possible to determine what proportion of differences identified in this report are directly attributable to ethnicity. Differences observed may indicate areas worth further investigation, but should not be taken as evidence of bias or as direct effects of ethnicity.
In general, minority ethnic groups appear to be over-represented at many stages throughout the CJS compared with the White ethnic group. The greatest disparity appears at the point of stop and search, arrests, custodial sentencing and prison population. Among minority ethnic groups, Black individuals were often the most over-represented. Outcomes for minority ethnic children are often more pronounced at various points of the CJS. Differences in outcomes between ethnic groups over time present a mixed picture, with disparity decreasing in some areas are and widening in others.
In 2023, the child abuse rate for children of Hispanic origin was at 6.7, indicating 6.7 out of every 1,000 Hispanic children in the United States suffered from some sort of abuse. This rate was highest among American Indian or Alaska Native children, with 13.8 children out of every 1,000 experiencing some form of abuse. Child abuse in the U.S. The child abuse rate in the United States is highest among American Indian or Alaska Native victims, followed by African-American victims. It is most common among children between two to five years of age. While child abuse cases are fairly evenly distributed between girls and boys, more boys than girls are victims of abuse resulting in death. The most common type of maltreatment is neglect, followed by physical abuse. Risk factors Child abuse is often reported by teachers, law enforcement officers, or social service providers. In the large majority of cases, the perpetrators of abuse were a parent of the victim. Risk factors, such as teen pregnancy, violent crime, and poverty that are associated with abuse and neglect have been found to be quite high in the United States in comparison to other countries.
In 1980, the National Institute of Justice awarded a grant to the Cornell University College of Human Ecology for the establishment of the Center for the Study of Race, Crime, and Social Policy in Oakland, California. This center mounted a long-term research project that sought to explain the wide variation in crime statistics by race and ethnicity. Using information from eight ethnic communities in Oakland, California, representing working- and middle-class Black, White, Chinese, and Hispanic groups, as well as additional data from Oakland's justice systems and local organizations, the center conducted empirical research to describe the criminalization process and to explore the relationship between race and crime. The differences in observed patterns and levels of crime were analyzed in terms of: (1) the abilities of local ethnic communities to contribute to, resist, neutralize, or otherwise affect the criminalization of its members, (2) the impacts of criminal justice policies on ethnic communities and their members, and (3) the cumulative impacts of criminal justice agency decisions on the processing of individuals in the system. Administrative records data were gathered from two sources, the Alameda County Criminal Oriented Records Production System (CORPUS) (Part 1) and the Oakland District Attorney Legal Information System (DALITE) (Part 2). In addition to collecting administrative data, the researchers also surveyed residents (Part 3), police officers (Part 4), and public defenders and district attorneys (Part 5). The eight study areas included a middle- and low-income pair of census tracts for each of the four racial/ethnic groups: white, Black, Hispanic, and Asian. Part 1, Criminal Oriented Records Production System (CORPUS) Data, contains information on offenders' most serious felony and misdemeanor arrests, dispositions, offense codes, bail arrangements, fines, jail terms, and pleas for both current and prior arrests in Alameda County. Demographic variables include age, sex, race, and marital status. Variables in Part 2, District Attorney Legal Information System (DALITE) Data, include current and prior charges, days from offense to charge, disposition, and arrest, plea agreement conditions, final results from both municipal court and superior court, sentence outcomes, date and outcome of arraignment, disposition, and sentence, number and type of enhancements, numbers of convictions, mistrials, acquittals, insanity pleas, and dismissals, and factors that determined the prison term. For Part 3, Oakland Community Crime Survey Data, researchers interviewed 1,930 Oakland residents from eight communities. Information was gathered from community residents on the quality of schools, shopping, and transportation in their neighborhoods, the neighborhood's racial composition, neighborhood problems, such as noise, abandoned buildings, and drugs, level of crime in the neighborhood, chances of being victimized, how respondents would describe certain types of criminals in terms of age, race, education, and work history, community involvement, crime prevention measures, the performance of the police, judges, and attorneys, victimization experiences, and fear of certain types of crimes. Demographic variables include age, sex, race, and family status. For Part 4, Oakland Police Department Survey Data, Oakland County police officers were asked about why they joined the police force, how they perceived their role, aspects of a good and a bad police officer, why they believed crime was down, and how they would describe certain beats in terms of drug availability, crime rates, socioeconomic status, number of juveniles, potential for violence, residential versus commercial, and degree of danger. Officers were also asked about problems particular neighborhoods were experiencing, strategies for reducing crime, difficulties in doing police work well, and work conditions. Demographic variables include age, sex, race, marital status, level of education, and years on the force. In Part 5, Public Defender/District Attorney Survey Data, public defenders and district attorneys were queried regarding which offenses were increasing most rapidly in Oakland, and they were asked to rank certain offenses in terms of seriousness. Respondents were also asked about the public's influence on criminal justice agencies and on the performance of certain criminal justice agencies. Respondents were presented with a list of crimes and asked how typical these offenses were and what factors influenced their decisions about such cases (e.g., intent, motive, evidence, behavior, prior history, injury or loss, substance abuse, emotional trauma). Other variables measured how often and under what circumstances the public defender and client and the public defender and the district attorney agreed on the case, defendant characteristics in terms of who should not be put on the stand, the effects of Proposition 8, public defender and district attorney plea guidelines, attorney discretion, and advantageous and disadvantageous characteristics of a defendant. Demographic variables include age, sex, race, marital status, religion, years of experience, and area of responsibility.
Number, percentage and rate (per 100,000 population) of homicide victims, by racialized identity group (total, by racialized identity group; racialized identity group; South Asian; Chinese; Black; Filipino; Arab; Latin American; Southeast Asian; West Asian; Korean; Japanese; other racialized identity group; multiple racialized identity; racialized identity, but racialized identity group is unknown; rest of the population; unknown racialized identity group), gender (all genders; male; female; gender unknown) and region (Canada; Atlantic region; Quebec; Ontario; Prairies region; British Columbia; territories), 2019 to 2024.
These data examine the effects on total crime rates of changes in the demographic composition of the population and changes in criminality of specific age and race groups. The collection contains estimates from national data of annual age-by-race specific arrest rates and crime rates for murder, robbery, and burglary over the 21-year period 1965-1985. The data address the following questions: (1) Are the crime rates reported by the Uniform Crime Reports (UCR) data series valid indicators of national crime trends? (2) How much of the change between 1965 and 1985 in total crime rates for murder, robbery, and burglary is attributable to changes in the age and race composition of the population, and how much is accounted for by changes in crime rates within age-by-race specific subgroups? (3) What are the effects of age and race on subgroup crime rates for murder, robbery, and burglary? (4) What is the effect of time period on subgroup crime rates for murder, robbery, and burglary? (5) What is the effect of birth cohort, particularly the effect of the very large (baby-boom) cohorts following World War II, on subgroup crime rates for murder, robbery, and burglary? (6) What is the effect of interactions among age, race, time period, and cohort on subgroup crime rates for murder, robbery, and burglary? (7) How do patterns of age-by-race specific crime rates for murder, robbery, and burglary compare for different demographic subgroups? The variables in this study fall into four categories. The first category includes variables that define the race-age cohort of the unit of observation. The values of these variables are directly available from UCR and include year of observation (from 1965-1985), age group, and race. The second category of variables were computed using UCR data pertaining to the first category of variables. These are period, birth cohort of age group in each year, and average cohort size for each single age within each single group. The third category includes variables that describe the annual age-by-race specific arrest rates for the different crime types. These variables were estimated for race, age, group, crime type, and year using data directly available from UCR and population estimates from Census publications. The fourth category includes variables similar to the third group. Data for estimating these variables were derived from available UCR data on the total number of offenses known to the police and total arrests in combination with the age-by-race specific arrest rates for the different crime types.
This is an Official Statistics bulletin produced by statisticians in the Ministry of Justice, Home Office and the Office for National Statistics. It brings together, for the first time, a range of official statistics from across the crime and criminal justice system, providing an overview of sexual offending in England and Wales. The report is structured to highlight: the victim experience; the police role in recording and detecting the crimes; how the various criminal justice agencies deal with an offender once identified; and the criminal histories of sex offenders.
Providing such an overview presents a number of challenges, not least that the available information comes from different sources that do not necessarily cover the same period, the same people (victims or offenders) or the same offences. This is explained further in the report.
Based on aggregated data from the ‘Crime Survey for England and Wales’ in 2009/10, 2010/11 and 2011/12, on average, 2.5 per cent of females and 0.4 per cent of males said that they had been a victim of a sexual offence (including attempts) in the previous 12 months. This represents around 473,000 adults being victims of sexual offences (around 404,000 females and 72,000 males) on average per year. These experiences span the full spectrum of sexual offences, ranging from the most serious offences of rape and sexual assault, to other sexual offences like indecent exposure and unwanted touching. The vast majority of incidents reported by respondents to the survey fell into the other sexual offences category.
It is estimated that 0.5 per cent of females report being a victim of the most serious offences of rape or sexual assault by penetration in the previous 12 months, equivalent to around 85,000 victims on average per year. Among males, less than 0.1 per cent (around 12,000) report being a victim of the same types of offences in the previous 12 months.
Around one in twenty females (aged 16 to 59) reported being a victim of a most serious sexual offence since the age of 16. Extending this to include other sexual offences such as sexual threats, unwanted touching or indecent exposure, this increased to one in five females reporting being a victim since the age of 16.
Around 90 per cent of victims of the most serious sexual offences in the previous year knew the perpetrator, compared with less than half for other sexual offences.
Females who had reported being victims of the most serious sexual offences in the last year were asked, regarding the most recent incident, whether or not they had reported the incident to the police. Only 15 per cent of victims of such offences said that they had done so. Frequently cited reasons for not reporting the crime were that it was ‘embarrassing’, they ‘didn’t think the police could do much to help’, that the incident was ‘too trivial or not worth reporting’, or that they saw it as a ‘private/family matter and not police business’
In 2011/12, the police recorded a total of 53,700 sexual offences across England and Wales. The most serious sexual offences of ‘rape’ (16,000 offences) and ‘sexual assault’ (22,100 offences) accounted for 71 per cent of sexual offences recorded by the police. This differs markedly from victims responding to the CSEW in 2011/12, the majority of whom were reporting being victims of other sexual offences outside the most serious category.
This reflects the fact that victims are more likely to report the most serious sexual offences to the police and, as such, the police and broader criminal justice system (CJS) tend to deal largely with the most serious end of the spectrum of sexual offending. The majority of the other sexual crimes recorded by the police related to ‘exposure or voyeurism’ (7,000) and ‘sexual activity with minors’ (5,800).
Trends in recorded crime statistics can be influenced by whether victims feel able to and decide to report such offences to the police, and by changes in police recording practices. For example, while there was a 17 per cent decrease in recorded sexual offences between 2005/06 and 2008/09, there was a seven per cent increase between 2008/09 and 2010/11. The latter increase may in part be due to greater encouragement by the police to victims to come forward and improvements in police recording, rather than an increase in the level of victimisation.
After the initial recording of a crime, the police may later decide that no crime took place as more details about the case emerge. In 2011/12, there were 4,155 offences initially recorded as sexual offences that the police later decided were not crimes. There are strict guidelines that set out circumstances under which a crime report may be ‘no crimed’. The ‘no-crime’ rate for sexual offences (7.2 per cent) compare
This data set contains New York City Police Department provided incident level data for domestic violence related offenses felony assaults, felony rapes and domestic incident reports) for calendar years 2020 and 2021. The data includes: date of incident, precinct of incident, borough of incident, suspect victim relationship, victim stated relationship description, victims race, victims sex, victims reported age, suspect race, suspect sex, suspect reported age, community district of incident, community district has high poverty rate, community district has low median household income, and high rate of unemployment. The following defines domestic violence incident report, domestic violence related felony assault and felony rapes: Domestic Violence Incident Report (DIR) is a form that police must complete every time they respond to a domestic incident, whether or not an arrest is made. A DIR would be filed for any domestic violence offense, including felony assault and felony rape.
Biennial statistics on the representation of Black, Asian and Minority Ethnic groups as victims, suspects, offenders and employees in the Criminal Justice System.
These reports are released by the Ministry of Justice and produced in accordance with arrangements approved by the UK Statistics Authority.
This report provides information about how members of Black, Asian and Minority Ethnic (BME) Groups in England and Wales were represented in the Criminal Justice System (CJS) in the most recent year for which data were available, and, wherever possible, across the last five years. Section 95 of the Criminal Justice Act 1991 requires the Government to publish statistical data to assess whether any discrimination exists in how the CJS treats people based on their race.
These statistics are used by policy makers, the agencies who comprise the CJS and others to monitor differences between ethnic groups and where practitioners and others may wish to undertake more in-depth analysis. The identification of differences should not be equated with discrimination as there are many reasons why apparent disparities may exist.
The most recent data on victims showed differences in the risks of crime between ethnic groups and, for homicides, in the relationship between victims and offenders. Overall, the number of racist incidents and racially or religiously aggravated offences recorded by the police had decreased over the last five years. Key Points:
Per 1,000 population, higher rates of s1 Stop and Searches were recorded for all BME groups (except for Chinese or Other) than for the White group. While there were decreases across the last five years in the overall number of arrests and in arrests of White people, arrests of those in the Black and Asian group increased.
Data on out of court disposals and court proceedings show some differences in the sanctions issued to people of differing ethnicity and also in sentence lengths. These differences are likely to relate to a range of factors including variations in the types of offences committed and the plea entered, and should therefore be treated with caution. Key points:
In 2022, about 194,164 perpetrators of child abuse in the United States were white. In that same year, about 83,314 perpetrators of child abuse were Hispanic, and 25,092 were of unknown ethnic origin.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
7.7% of White women reported being the victim of domestic abuse in the year to March 2020, compared with 3.6% of White men.
https://www.icpsr.umich.edu/web/ICPSR/studies/38963/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38963/terms
The National Crime Victimization Survey (NCVS), previously called the National Crime Survey (NCS), has been collecting data on personal and household victimization through an ongoing survey of a nationally-representative sample of residential addresses since 1973. The NCVS was designed with four primary objectives: (1) to develop detailed information about the victims and consequences of crime, (2) to estimate the number and types of crimes not reported to the police, (3) to provide uniform measures of selected types of crimes, and (4) to permit comparisons over time and types of areas. Beginning in 1992, the survey categorizes crimes as "personal" or "property." Personal crimes include rape and sexual assault, robbery, aggravated and simple assault, and purse-snatching/pocket-picking, while property crimes include burglary, theft, motor vehicle theft, and vandalism. Each respondent is asked a series of screen questions designed to determine whether she or he was victimized during the six-month period preceding the first day of the month of the interview. A "household respondent" is also asked to report on crimes against the household as a whole (e.g., burglary, motor vehicle theft). The data include type of crime, month, time, and location of the crime, relationship between victim and offender, characteristics of the offender, self-protective actions taken by the victim during the incident and results of those actions, consequences of the victimization, type of property lost, whether the crime was reported to police and reasons for reporting or not reporting, and offender use of weapons, drugs, and alcohol. Basic demographic information such as age, race, gender, and income is also collected, to enable analysis of crime by various subpopulations. This dataset represents the concatenated version of the NCVS on a collection year basis for 1992-2023. A collection year contains records from interviews conducted in the 12 months of the given year. Under the collection year format, victimizations are counted in the year the interview is conducted, regardless of the year when the crime incident occurred.For additional information on the dataset, please see the documentation for the data from the most current year of the NCVS, ICPSR Study 38962.
Police-reported hate crime, by type of motivation (race or ethnicity, religion, sexual orientation, language, disability, sex, age), selected regions and Canada (selected police services), 2014 to 2024.
In the year ended June 2023, European victims accounted for around ** percent of victim-reported sexual assault crimes in New Zealand. The number of victim-reported crimes has trended slightly upwards over the past few years, with females in the ** to ** age category reporting the highest number of offenses.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
White offenders had the highest reoffending rate out of all ethnic groups (26.6%) in the year to March 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 15 release notes:Adds 2021 data.Version 14 release notes:Adds 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will be the last Arrests by Age, Sex, and Race data they release. Version 13 release notes:Changes R files from .rda to .rds.Fixes bug where the number_of_months_reported variable incorrectly was the largest of the number of months reported for a specific crime variable. For example, if theft was reported Jan-June and robbery was reported July-December in an agency, in total there were 12 months reported. But since each crime (and let's assume no other crime was reported more than 6 months of the year) only was reported 6 months, the number_of_months_reported variable was incorrectly set at 6 months. Now it is the total number of months reported of any crime. So it would be set to 12 months in this example. Thank you to Nick Eubank for alerting me to this issue.Adds rows even when a agency reported zero arrests that month; all arrest values are set to zero for these rows.Version 12 release notes:Adds 2019 data.Version 11 release notes:Changes release notes description, does not change data.Version 10 release notes:The data now has the following age categories (which were previously aggregated into larger groups to reduce file size): under 10, 10-12, 13-14, 40-44, 45-49, 50-54, 55-59, 60-64, over 64. These categories are available for female, male, and total (female+male) arrests. The previous aggregated categories (under 15, 40-49, and over 49 have been removed from the data). Version 9 release notes:For each offense, adds a variable indicating the number of months that offense was reported - these variables are labeled as "num_months_[crime]" where [crime] is the offense name. These variables are generated by the number of times one or more arrests were reported per month for that crime. For example, if there was at least one arrest for assault in January, February, March, and August (and no other months), there would be four months reported for assault. Please note that this does not differentiate between an agency not reporting that month and actually having zero arrests. The variable "number_of_months_reported" is still in the data and is the number of months that any offense was reported. So if any agency reports murder arrests every month but no other crimes, the murder number of months variable and the "number_of_months_reported" variable will both be 12 while every other offense number of month variable will be 0. Adds data for 2017 and 2018.Version 8 release notes:Adds annual data in R format.Changes project name to avoid confusing this data for the ones done by NACJD.Fixes bug where bookmaking was excluded as an arrest category. Changed the number of categories to include more offenses per category to have fewer total files. Added a "total_race" file for each category - this file has total arrests by race for each crime and a breakdown of juvenile/adult by race. Version 7 release notes: Adds 1974-1979 dataAdds monthly data (only totals by sex and race, not by age-categories). All data now from FBI, not NACJD. Changes some column names so all columns are <=32 characters to be usable in Stata.Changes how number of months reported is calculated. Now it is the number of unique months with arrest data reported - months of data from the monthly header file (i.e. juvenile disposition data) are not considered in this calculation. Version 6 release notes: Fix bug where juvenile female columns had the same value as juvenile male columns.Version 5 release notes: Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.Version 4 release notes: Changes column names from "p
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
In the year ending in March 2024, 31.3% of victims of racially or religiously aggravated hate crime were Asian, 30.6% were White, and 23.1% were Black.
In 2023, Texas had the highest number of forcible rape cases in the United States, with 15,097 reported rapes. Delaware had the lowest number of reported forcible rape cases at 194. Number vs. rate It is perhaps unsurprising that Texas and California reported the highest number of rapes, as these states have the highest population of states in the U.S. When looking at the rape rate, or the number of rapes per 100,000 of the population, a very different picture is painted: Alaska was the state with the highest rape rate in the country in 2023, with California ranking as 30th in the nation. The prevalence of rape Rape and sexual assault are notorious for being underreported crimes, which means that the prevalence of sex crimes is likely much higher than what is reported. Additionally, more than a third of women worry about being sexually assaulted, and most sexual assaults are perpetrated by someone the victim knew.
In 2022, the prevalence of violent crime increased for all races in the United States in comparison to the previous year. In that year, around **** percent of White Americans experienced one or more violent victimizations and approximately **** percent of Black or African American people were the victims of a violent crime.