100+ datasets found
  1. Cancer death rates in the U.S. in 2022, by state

    • statista.com
    Updated Jun 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer death rates in the U.S. in 2022, by state [Dataset]. https://www.statista.com/statistics/248559/us-states-with-lowest-cancer-death-rates/
    Explore at:
    Dataset updated
    Jun 19, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, Utah had the lowest death rate from cancer among all U.S. states with around 116 deaths per 100,000 population. The states with the highest cancer death rates at that time were Mississippi, Kentucky and West Virginia. This statistic shows cancer death rates in the United States in 2022, by state.

  2. Cancer incidence rates in U.S. states in 2022

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cancer incidence rates in U.S. states in 2022 [Dataset]. https://www.statista.com/statistics/248533/us-states-with-highest-cancer-incidence-rates/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, Kentucky reported the highest cancer incidence rate in the United States, with around 512 new cases of cancer per 100,000 inhabitants. This statistic represents the U.S. states with the highest cancer incidence rates per 100,000 population in 2022.

  3. CDC WONDER: Cancer Statistics

    • catalog.data.gov
    • healthdata.gov
    • +6more
    Updated Jul 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-cancer-statistics
    Explore at:
    Dataset updated
    Jul 29, 2025
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  4. Number of new lung and bronchus cancer cases in the U.S. in 2025, by state

    • statista.com
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of new lung and bronchus cancer cases in the U.S. in 2025, by state [Dataset]. https://www.statista.com/statistics/1286318/lung-and-bronchus-cancer-cases-us-state/
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    United States
    Description

    It is estimated that in 2025 there will be a total of 226,650 new cases of lung and bronchus cancer in the United States. The highest number of these cases are estimated to be in the state of Florida. This statistic presents the estimated number of new lung and bronchus cancer cases in the United States in 2025, by state.

  5. U.S. rate of new alcohol-associated cancers in 2022, by state

    • statista.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. rate of new alcohol-associated cancers in 2022, by state [Dataset]. https://www.statista.com/statistics/950136/alcohol-cancer-rate-us-by-state/
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, Kentucky had the highest incidence of alcohol-associated cancer in the United States, with a rate of 145 per 100,000 people. This graph shows the rate of alcohol-related cancers per 100,000 people in the United States in 2022, by state.

  6. A

    ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-cancer-rates-by-u-s-state-5f6a/af56eb24/?iid=000-919&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State
    The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State
    Rates of dying from cancer also vary from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

    This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.

    How to use this dataset

    • Analyze Range in relation to Rate
    • Study the influence of Range on Rate
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Adam Helsinger

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  7. Prostate cancer death rate in the U.S. in 2022, by state

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Prostate cancer death rate in the U.S. in 2022, by state [Dataset]. https://www.statista.com/statistics/791513/death-rate-prostate-cancer-us-by-state/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, there were around ** deaths from prostate cancer per 100,000 population in the state of Oregon, making it the state with the highest prostate cancer death rate that year. This statistic shows the death rate from prostate cancer in the U.S. in 2022, by state.

  8. Cancer Incidence - Surveillance, Epidemiology, and End Results (SEER)...

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (NCI), National Institutes of Health (NIH) (2025). Cancer Incidence - Surveillance, Epidemiology, and End Results (SEER) Registries Limited-Use [Dataset]. https://catalog.data.gov/dataset/cancer-incidence-surveillance-epidemiology-and-end-results-seer-registries-limited-use
    Explore at:
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    SEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.

  9. f

    Estimation of cancer incidence in the state of São Paulo, Brazil, based on...

    • scielo.figshare.com
    jpeg
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolina Terra de Moraes Luizaga; Cassia Maria Buchalla (2023). Estimation of cancer incidence in the state of São Paulo, Brazil, based on real data [Dataset]. http://doi.org/10.6084/m9.figshare.22188010.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    SciELO journals
    Authors
    Carolina Terra de Moraes Luizaga; Cassia Maria Buchalla
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    State of São Paulo, Brazil
    Description

    This study aims to evaluate the feasibility of applying a method of estimating the incidence of cancer to regions of the state of São Paulo, Brazil, from real data (not estimated) and retrospectively comparing the results obtained with the official estimates. A method based on mortality and on the incidence to mortality (I/M) ration was used according to sex, age, and tumor location. In the I/M numerator, new cases of cancer were used from the population records of Jaú and São Paulo from 2006-2010; in the denominator, deaths from 2006-2010 in the respective areas, extracted from the national mortality system. The estimates resulted from the multiplication of I/M by the number of cancer deaths in 2010 for each region. Population data from the 2010 Demographic Census were used to estimate incidence rates. For the adjustment by age, the world standard population was used. We calculated the relative differences between the gross incidence rates estimated in this study and the official ones. Age-adjusted cancer incidence rates were 260.9/100,000 for men and 216.6/100,000 for women. Prostate cancer was the most common in males, whereas breast cancer was most common in females. Differences between the rates of this study and the official rates were 3.3% and 1.5% for each sex. The estimated incidence was compatible with the officially presented state profile, indicating that the application of real data did not alter the morbidity profile, while it did indicate different risk magnitudes. Despite the over-representativeness of the cancer registry with greater population coverage, the selected method proved feasible to point out different patterns within the state.

  10. Data from: County-level cumulative environmental quality associated with...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). County-level cumulative environmental quality associated with cancer incidence. [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/county-level-cumulative-environmental-quality-associated-with-cancer-incidence
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Population based cancer incidence rates were abstracted from National Cancer Institute, State Cancer Profiles for all available counties in the United States for which data were available. This is a national county-level database of cancer data that are collected by state public health surveillance systems. All-site cancer is defined as any type of cancer that is captured in the state registry data, though non-melanoma skin cancer is not included. All-site age-adjusted cancer incidence rates were abstracted separately for males and females. County-level annual age-adjusted all-site cancer incidence rates for years 2006–2010 were available for 2687 of 3142 (85.5%) counties in the U.S. Counties for which there are fewer than 16 reported cases in a specific area-sex-race category are suppressed to ensure confidentiality and stability of rate estimates; this accounted for 14 counties in our study. Two states, Kansas and Virginia, do not provide data because of state legislation and regulations which prohibit the release of county level data to outside entities. Data from Michigan does not include cases diagnosed in other states because data exchange agreements prohibit the release of data to third parties. Finally, state data is not available for three states, Minnesota, Ohio, and Washington. The age-adjusted average annual incidence rate for all counties was 453.7 per 100,000 persons. We selected 2006–2010 as it is subsequent in time to the EQI exposure data which was constructed to represent the years 2000–2005. We also gathered data for the three leading causes of cancer for males (lung, prostate, and colorectal) and females (lung, breast, and colorectal). The EQI was used as an exposure metric as an indicator of cumulative environmental exposures at the county-level representing the period 2000 to 2005. A complete description of the datasets used in the EQI are provided in Lobdell et al. and methods used for index construction are described by Messer et al. The EQI was developed for the period 2000– 2005 because it was the time period for which the most recent data were available when index construction was initiated. The EQI includes variables representing each of the environmental domains. The air _domain includes 87 variables representing criteria and hazardous air pollutants. The water _domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land _domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built _domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jagai, J., L. Messer, K. Rappazzo , C. Gray, S. Grabich , and D. Lobdell. County-level environmental quality and associations with cancer incidence#. Cancer. John Wiley & Sons Incorporated, New York, NY, USA, 123(15): 2901-2908, (2017).

  11. Prostate cancer incidence rate in the U.S. in 2021, by state

    • statista.com
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Prostate cancer incidence rate in the U.S. in 2021, by state [Dataset]. https://www.statista.com/statistics/791507/incidence-rate-prostate-cancer-us-by-state/
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, there were 150 cases of prostate cancer per 100,000 population in the state of Connecticut, making it the state with the highest prostate cancer incidence rate that year. This statistic shows the incidence rate of prostate cancer in the U.S. in 2021, by state.

  12. SHIP Cancer Mortality Rate 2009-2021

    • healthdata.gov
    • opendata.maryland.gov
    • +2more
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2025). SHIP Cancer Mortality Rate 2009-2021 [Dataset]. https://healthdata.gov/State/SHIP-Cancer-Mortality-Rate-2009-2021/neys-mhkf
    Explore at:
    csv, tsv, xml, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    opendata.maryland.gov
    Description

    This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated on 8/14/2024

    Cancer Mortality Rate - This indicator shows the age-adjusted mortality rate from cancer (per 100,000 population). Maryland’s age adjusted cancer mortality rate is higher than the US cancer mortality rate. Cancer impacts people across all population groups, however wide racial disparities exist. https://health.maryland.gov/pophealth/Documents/SHIP/SHIP%20Lite%20Data%20Details/Cancer%20Mortality%20Rate.pdf"/> Link to Data Details

  13. H

    Extracted Data From: United States Cancer Statistics

    • dataverse.harvard.edu
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2025). Extracted Data From: United States Cancer Statistics [Dataset]. http://doi.org/10.7910/DVN/GQ7E1U
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 18, 2025
    Dataset provided by
    Harvard Dataverse
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1999 - Dec 31, 2021
    Area covered
    United States
    Description

    This submission includes publicly available data extracted in its original form. Please reference the Related Publication listed here for source and citation information "The United States Cancer Statistics (USCS) are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI)." [Quote from: https://wonder.cdc.gov/cancer.htm]>

  14. g

    Community Health: All Cancer Incidence Rate per 100,000 by County Map:...

    • gimi9.com
    • data.wu.ac.at
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Community Health: All Cancer Incidence Rate per 100,000 by County Map: Latest Data [Dataset]. https://gimi9.com/dataset/ny_p65n-7xzv/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This map shows the incidence rate per 100,000 for all cancer types by county. Counties are shaded based on quartile distribution. The lighter shaded counties have lower cancer incidence rates. The darker shaded counties have higher cancer incidence rates. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 11 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset.

  15. H

    Air Quality-Lung Cancer Data

    • dataverse.harvard.edu
    Updated Jan 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mithun Acharjee; Kumer Pial Das; Young S.Stanley (2020). Air Quality-Lung Cancer Data [Dataset]. http://doi.org/10.7910/DVN/HMOEJO
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 31, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Mithun Acharjee; Kumer Pial Das; Young S.Stanley
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data comes from two different sources. Population-based lung cancer incidence rates for the period 2010-2014 (most updated data) were abstracted from National Cancer Institute state cancer profiles (Schwartz et al. 1996).This national county-level database of cancer data is collected by state public health surveillance systems. The domain specific county level environmental quality index (EQI) data for the period 2000-2005 were abstracted from United States Environmental Protection Agency (USEPA) profile. Complete descriptions of the datasets used in the EQI are provided in Lobdell’s paper (Lobdell 2011). Data were merged based on the Federal Information Processing Standards (FIPS) code. Out of 3144 counties in United States this study has available information for 2602 counties: Data was not available for four states namely Kansas, Michigan, Minnesota and Nevada due to state legislation and regulations which prohibit the release of county-level data to outside entities, county whose lung cancer mortality information is missing were omitted from the data set, the Union county, Florida is an outlier in terms of mortality information which was deleted from the data set, in the process of local control analysis this study experiences two (cluster 28 and 29) non-informative clusters (non-informative cluster is one for which either treatment or control group information is missing). For analysis, non-informative clusters information was deleted from the data set. Three types of variables are used in this study: (i) lung cancer mortality as an outcome variable (ii) binary treatment indicator is the PM2.5 high (greater than 10.59 mg/m3) vs. low (less than 10.59 mg/m3) (iii) three potential X confounder for clustering namely land EQI, sociodemographic EQI and built EQI. For each index, higher values correspond to poorer environmental quality (Jagai et al. 2017). As PM2.5 is one of the indicators for measuring air EQI, that is why we do not consider the air EQI to avoid confounding effects.

  16. a

    NCI State Cancer Incidence Rates

    • hub.arcgis.com
    Updated Aug 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2019). NCI State Cancer Incidence Rates [Dataset]. https://hub.arcgis.com/datasets/NCI::nci-state-cancer-incidence-rates
    Explore at:
    Dataset updated
    Aug 20, 2019
    Dataset authored and provided by
    National Cancer Institute
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2012 to 2016.Data is segmented by sex and age, with fields describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.gov Data NotationsState Cancer Registries may provide more current or more local data.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population seer.cancer.gov/stdpopulations/stdpop.19ages.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. [seer.cancer.gov/seerstat]Population counts for denominators are based on Census populations as modified [seer.cancer.gov/popdata] by NCI. The 1969-2016 US Population Data File [seer.cancer.gov/popdata] is used for SEER and NPCR incidence rates.‡ Incidence data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information. Rates and trends are computed using different standards for malignancy. For more information see malignant.html.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage [seer.cancer.gov/tools/ssm].Healthy People 2020 Objectives [www.healthypeople.gov]provided by the Centers for Disease Control and Prevention [www.cdc.gov]. Michigan Data do not include cases diagnosed in other states for those states in which the data exchange agreement specifically prohibits the release of data to third parties.Trend Data not available for Nevada.Data Source Field Key:(1) Source: CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission and SEER November 2018 submission as published in United States Cancer Statistics nccd.cdc.gov/uscs Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission. State rates include rates from metropolitan areas funded by SEER [seer.cancer.gov/registries].(6) Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission.(7) Source: SEER November 2018 submission.8 Source: Incidence data provided by the SEER Program. [seer.cancer.gov] AAPCs are calculated by the Joinpoint Regression Program [surveillance.cancer.gov/joinpoint] and are based on APCs. Data are age-adjusted to the 2000 US standard population www.seer.cancer.gov/stdpopulations/single_age.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The 1969-2017 US Population Data [seer.cancer.gov/popdata] File is used with SEER November 2018 data. Please note that the data comes from different sources. Due to different years [statecancerprofiles.cancer.gov/historicaltrend/differences.html] of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. [seer.cancer.gov/seerstat] Please refer to the source for each graph for additional information. Some data are not available [http://statecancerprofiles.cancer.gov/datanotavailable.html] for combinations of geography, cancer site, age, and race/ethnicity.

  17. w

    Community Health: Lung and Bronchus Cancer Incidence Rate per 100,000 by...

    • data.wu.ac.at
    • gimi9.com
    Updated Sep 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open Data NY - DOH (2017). Community Health: Lung and Bronchus Cancer Incidence Rate per 100,000 by County Map: Latest Data [Dataset]. https://data.wu.ac.at/schema/health_data_ny_gov/OWVzMy1hM2d3
    Explore at:
    Dataset updated
    Sep 14, 2017
    Dataset provided by
    Open Data NY - DOH
    Description

    This map shows the incidence rate per 100,000 of lung and bronchus cancer by county. Counties are shaded based on quartile distribution. The lighter shaded counties have lower incidence rates of lung and bronchus cancer. The darker shaded counties have higher incidence rates of lung and bronchus cancer. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 8 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset.

  18. NCI State Lung Cancer Incidence Rates

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Lung Cancer Incidence Rates [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/NCI::nci-state-lung-cancer-incidence-rates/about
    Explore at:
    Dataset updated
    Jan 2, 2020
    Dataset authored and provided by
    National Cancer Institutehttp://www.cancer.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Lung Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are segmented by sex (Both Sexes, Male, and Female) and age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  19. M

    Breast Cancer Statistics 2025 By Types, Risks, Ratio

    • media.market.us
    Updated Jan 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2025). Breast Cancer Statistics 2025 By Types, Risks, Ratio [Dataset]. https://media.market.us/breast-cancer-statistics/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Description

    Editor’s Choice

    • Global Breast Cancer Market size is expected to be worth around USD 49.2 Bn by 2032 from USD 19.8 Bn in 2022, growing at a CAGR of 9.8% during the forecast period from 2022 to 2032.
    • Breast cancer is the most common cancer among women worldwide. In 2020, there were about 2.3 million new cases of breast cancer diagnosed globally.
    • Breast cancer is the leading cause of cancer-related deaths in women. In 2020, it was responsible for approximately 685,000 deaths worldwide.
    • The survival rate of breast cancer has improved over the years. In the United States, the overall five-year survival rate of breast cancer is around 90%.
    • The American Cancer Society recommends annual mammograms starting at age 40 for women at average risk.
    • Although rare, breast cancer also occurs in men. Less than 1% of breast cancer cases are diagnosed in males.

    (Source: WHO, American Cancer Society)

    https://market.us/wp-content/uploads/2023/04/Breast-Cancer-Market-Value.jpg" alt="">

  20. Breast cancer incidence rate in the U.S. in 2021, by state

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Breast cancer incidence rate in the U.S. in 2021, by state [Dataset]. https://www.statista.com/statistics/779875/incidence-rate-breast-cancer-us-by-state/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, there were around *** new cases of breast cancer per 100,000 population in the state of Connecticut, making it the state with the highest breast cancer incidence rate that year. This statistic shows the incidence rate of breast cancer in the U.S. in 2021, by state.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Cancer death rates in the U.S. in 2022, by state [Dataset]. https://www.statista.com/statistics/248559/us-states-with-lowest-cancer-death-rates/
Organization logo

Cancer death rates in the U.S. in 2022, by state

Explore at:
Dataset updated
Jun 19, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
United States
Description

In 2022, Utah had the lowest death rate from cancer among all U.S. states with around 116 deaths per 100,000 population. The states with the highest cancer death rates at that time were Mississippi, Kentucky and West Virginia. This statistic shows cancer death rates in the United States in 2022, by state.

Search
Clear search
Close search
Google apps
Main menu